Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Anal Methods ; 14(22): 2195-2203, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612347


The benefits of molecularly imprinted polymer (MIP) technology in creating artificial receptors to replace natural counterparts have piqued the interest of numerous researchers in recent years. We propose a biomimetic enrofloxacin-MIP for enrofloxacin (ENRO) antigen detection using gold nanoparticles (AuNPs) and MIP methodologies in this study. A self-assembled monomer layer of aminothiophenol was used to immobilize a pre-formed complex of the anti-enrofloxacin monoclonal antibody and enrofloxacin antigen onto the surface of an AuNP coated screen-printed carbon ink electrode (SPCE). The poly-(aminothiophenol) layer thickness was adjusted to entrap and restrict enrofloxacin antigens near the surface. The imprinting and removal of the enrofloxacin antigen in the MIP film were strongly validated by the Raman spectra. The final mAb-MIP sensor had better sensitivity (302 Ω mL ng-1) and a better detection limit (0.05 ng mL-1) than self-assembled monolayer (SAM)-based immunosensors, which had 102 Ω mL ng-1 and 0.1 ng mL-1, respectively.

Técnicas Biossensoriais , Nanopartículas Metálicas , Impressão Molecular , Biomimética , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Enrofloxacina , Ouro , Imunoensaio , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polímeros
ACS Appl Mater Interfaces ; 11(50): 47635-47641, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31769645


An innovative novel interface has been designed and developed to be used as a potential active layer in chemically sensitive field-effect transistor (Chem-FET) sensor devices for the specific sensing of Cs+. In this study, the synthesis of a specific Cs+ probe based on calix[4]arene benzocrown ether, its photophysical properties, and its grafting onto a single lipid monolayer (SLM) recently used as an efficient ultrathin organic dielectric in Chem-FETs are reported simultaneously. On the basis of both optical and NMR titration experiments, the probe has shown high selectivity and specificity for Cs+ compared to interfering cations, even if an admixture is used. Additionally, Attenuated Total Reflectance Fourier Transform Infra Red (ATR-FTIR) spectroscopy was successfully used to characterize and prove the efficient grafting of the probe onto a SLM and the formation of the innovative novel sensing layer.