Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Oper Neurosurg (Hagerstown) ; 22(6): 409-424, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867081


BACKGROUND: Selection of skull base approaches is a critical skill for complex cranial surgery, which demands nuanced understanding of neuroanatomy and pathology. OBJECTIVE: To develop novel pedagogical resources for approach selection education and assessment. METHODS: A prospectively maintained skull base registry was screened for posterior fossa tumors amenable to 3-dimensional (3D) modeling of multiple operative approaches. Inclusion criteria were high-resolution preoperative and postoperative computed tomography and MRI studies (≤1 mm) and consensus that at least 3 posterior fossa craniotomies would provide feasible access. Cases were segmented using Mimics and modeled using 3-Matic. Clinical Vignettes, Approach Selection Questionnaire, and Clinical Application Questionnaire were compiled for implementation as a teaching/testing tool. RESULTS: Seven cases were selected, each representing a major posterior fossa approach group. 3D models were rendered using clinical imaging for the primary operative approach, as well as a combination of laboratory neuroanatomic data and extrapolation from comparable craniotomies to generate 2 alternative approaches in each patient. Modeling data for 3D figures were uploaded to an open-sourced database in a platform-neutral fashion (.x3d) for virtual/augmented reality and 3D printing applications. A semitransparent model of each approach without pathology and with key deep structures visualized was also modeled and included for comprehensive understanding. CONCLUSION: We report a novel series of open-source 3D models for skull base approach selection training, with supplemental resources. To the best of our knowledge, this is the first such series designed for pedagogical purposes in skull base surgery or centered on open-source principles.

Neoplasias da Base do Crânio , Realidade Virtual , Humanos , Procedimentos Neurocirúrgicos/educação , Impressão Tridimensional , Base do Crânio/anatomia & histologia , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/cirurgia
ACS Omega ; 7(20): 17492-17500, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647440


Core-shell colloids make attractive feedstocks for three-dimensional (3D) printing mixed oxide glass materials because they enable synthetic control of precursor dimensions and compositions, improving glass fabrication precision. Toward that end, we report the design and use of core-shell germania-silica (GeO2-SiO2) colloids and their use as precursors to fabricate GeO2-SiO2 glass monoliths by direct ink write (DIW) 3D printing. By this method, GeO2 colloids were prepared in solution using sol-gel chemistry and formed oblong, raspberry-like agglomerates with ∼15 nm diameter primary particles that were predominantly amorphous but contained polycrystalline domains. An ∼15 nm encapsulating SiO2 shell layer was formed directly on the GeO2 core agglomerates to form core-shell GeO2-SiO2 colloids. For glass 3D printing, GeO2-SiO2 colloidal sols were formulated into a viscous ink by solvent exchange, printed into monoliths by DIW additive manufacturing, and sintered to transparent glasses. Characterization of the glass components demonstrates that the core-shell GeO2-SiO2 presents a feasible route to prepare quality, optically transparent low wt % GeO2-SiO2 glasses by DIW printing. Additionally, the results offer a novel, hybrid colloid approach to fabricating 3D-printed Ge-doped silica glass.