Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6412, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741010

RESUMO

Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.

2.
Bioresour Technol ; : 126300, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34752882

RESUMO

The prominent characteristics of the biochar, high porosity, sorption capacity with low density improve the aeration, making it a desirable amendment material for composting process. The composting efficiency was analysed by the impact of rice husk biochar amendment (0, 2, 4, 6, 8 and 10%) in the presence of salts for the co-composting of food waste and swine manure, in composting reactors for 50 days. Results revealed that biochar amendment had improved the degradation rates by microbial activities in comparison with control. The final compost quality was improved by reducing the bulk density (29-53%), C/N ratio (29-57%), gaseous emissions (CO2, CH4, and NH3) and microbial pathogens (Escherichia coli and Salmonella sp.). However, 6% biochar amendment had significant improvement in compost quality, degradation rates and nutritional value which is recommended as the ideal ratio for obtaining mature compost from the feedstock, food waste and swine manure.

3.
Water Sci Technol ; 84(7): 1793-1803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662313

RESUMO

A combination of a submerged membrane filtration system and powdered activated carbon (PAC) was investigated for nonylphenol ethoxylates removal. Both filtration flux and initial powdered activated carbon dosage had significant effects on the micropollutants removal efficiency. The best performance was achieved under the filtration flux of 20 L/m2.h and the initial powdered activated carbon of 50 mg/L. The removal efficiencies of nonylphenol ethoxylates was obtained at 75±5% in the first 60 hours, and then decreased at 55±7% and 23±11% in the following hours, respectively. As observed, over 65% of dissolved organic carbon mass adsorbed into powdered activated carbon that was suspended in the bulk phase, and the remainder was adsorbed into powdered activated carbon that deposited on the membrane surface. It reveals that the combination between submerged membrane filtration and PAC could be an effective solution for enhancing removal of micropollutants from water.


Assuntos
Carvão Vegetal , Purificação da Água , Adsorção , Etilenoglicóis , Pós
4.
ACS Omega ; 6(36): 23203-23210, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549121

RESUMO

Synthesizing novel photocatalysts that can effectively harvest photon energy over a wide range of the solar spectrum for practical applications is vital. Porphyrin-derived nanostructures with properties similar to those of chlorophyll have emerged as promising candidates to meet this requirement. In this study, tetrakis(4-carboxyphenyl) porphyrin (TCPP) nanofibers were formed on the surface of ZnO nanoparticles using a simple self-assembly approach. The obtained ZnO/TCPP nanofiber composites were characterized via scanning electron microscopy, X-ray diffraction analysis, and ultraviolet-visible absorbance and reflectance measurements. The results demonstrated that the ZnO nanoparticles with an average size of approximately 37 nm were well integrated in the TCPP nanofiber matrix. The resultant composite showed photocatalytic activity of ZnO and TCPP nanofibers concomitantly, with band gap energies of 3.12 and 2.43 eV, respectively. The ZnO/TCPP photocatalyst exhibited remarkable photocatalytic performance for RhB degradation with a removal percentage of 97% after 180 min of irradiation under simulated sunlight because of the synergetic activity of ZnO and TCPP nanofibers. The dominant active species participating in the photocatalytic reaction were •O2 - and OH•, resulting in enhanced charge separation by exciton-coupled charge-transfer processes between the hybrid materials.

5.
Sci Total Environ ; 795: 148755, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246151

RESUMO

This study investigates the performance of microbial fuel cells (MFC) for on-line monitoring ammonium (NH4+-N) in municipal wastewater. A double chamber microbial fuel cell (MFC) was established in a continuous mode under different influent ammonium concentrations ranging from 5 to 40 mg L-1. Results indicated that excess ammonium would inhibit the activity of electrogenic bacteria in the anode chamber and consequently affect electricity production. An inversely linear relationship between concentration and voltage generation was obtained with coefficient R2 0.99 and the MFC could detect up to 40 mg L-1 of NH4+-N. Notably, no further decline was observed in voltage output and there was in fact a further increase in ammonia concentration (>40 mg L-1). The stability and high accuracy of ammonium-based MFC biosensors exposed competitive results compared to traditional analytical tools, confirming the biosensor's reliability. Furthermore, pH 7.0; R 1000 Ω and HRT of 24 h are the best possible conditions for the MFC biosensor for monitoring ammonium. The simplicity in design and operation makes the biosensor more realistic for practical application.


Assuntos
Compostos de Amônio , Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletricidade , Eletrodos , Nitrogênio , Reprodutibilidade dos Testes , Águas Residuárias
6.
Sci Total Environ ; 793: 148598, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328983

RESUMO

This study investigated the effect of CaO2 pretreatment on sulfonamide antibiotics (SMs) remediation by Chlorella sp. Results showed that a CaO2 dose ranging from 0.05 to 0.1 g/g biomass was the best and led to higher SMs removal efficacy 5-10% higher than the control. The contributions made by cometabolism and CaO2 in SMs remediation were very similar. Bioassimilation could remove 24% of sulfadiazine (SDZ) and sulfamethazine (SMZ), and accounted for 38% of sulfamethoxazole (SMX) remediation. Pretreatment by CaO2 wielded a positive effect on microalgae. The extracellular polymeric substances (EPS) level of the CaO2 pretreatment microalgae was three times higher when subjected to non-pretreatment. For the long-term, pretreatment microalgae removed SMs 10-20% more than the non-pretreatment microalgae. Protein fractions of EPS in continuous operation produced up to 90 mg/L for cometabolism. For bioassimilation, SMX intensity of the pretreatment samples was 160-fold less than the non-treatment one. It indicated the CaO2 pretreatment has enhanced the biochemical function of the intracellular environment of microalgae. Peroxidase enzyme involved positively in the cometabolism and degradation of SMs to several metabolites including ring cleavage, hydroxylation and pterin-related conjugation.


Assuntos
Chlorella , Microalgas , Antibacterianos , Peróxidos , Sulfonamidas
7.
Chemosphere ; 282: 131108, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34119723

RESUMO

Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.


Assuntos
Recuperação e Remediação Ambiental , Metaloides , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Humanos , Metaloides/análise , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise
8.
Sci Total Environ ; 773: 145041, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940712

RESUMO

This study aims to offer insights into how ciprofloxacin (CIP) impact bacterial community structures in the Sponge-MBR process when CIP is spiked into hospital wastewater. We found that the CIP toxicity decreased richness critical phylotypes such as phylum class ẟ-, ß-, É£-proteobacteria, and Flavobacteria that co-respond to suppress denitrification and cake fouling to 37% and 28% respectively. Cluster analysis shows that the different community structures were formed under the influence of CIP toxicity. CIP decreased attached growth biomass by 2.3 times while increasing the concentration of permeate nitrate by 3.8 times, greatly affecting TN removal by up to 26%. Ammonia removal was kept stable by inflating the ammonia removal rate (p < 0.003), with the wealthy Nitrospira genus guaranteeing the nitrification activity. In addition, we observed an increasing richness of Chloroflexi and Planctomycetes, which may play a role in fouling reduction in the Sponge-MBR. Therefore, if the amount of antibiotics in hospital wastewater continues to increase, it is so important to extend biomass retention for denitrification recovery.


Assuntos
Ciprofloxacina , Microbiota , Reatores Biológicos , Ciprofloxacina/toxicidade , Nitrificação , Águas Residuárias
9.
Environ Pollut ; 280: 117001, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799130

RESUMO

Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0-8.0, at a temperature of 30-40 °C, and salinity of 0.1-3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.


Assuntos
Bacillaceae , Nanopartículas , Selênio , Bactérias , Oxirredução , Rios , Ácido Selenioso
10.
J Environ Manage ; 289: 112468, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823414

RESUMO

A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.


Assuntos
Dióxido de Carbono , Metanol , Biomassa , Carbono , Catálise
11.
Sci Total Environ ; 784: 147135, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33894605

RESUMO

This study investigated the environmental burdens concerning the recycling/recovery process of a wastewater treatment plant's construction material waste and biogas. Detailed data inventories of case studies were employed in several scenarios to explore the role of end-of-life treatment methods. The ReCiPe 2016 and the Greenhouse gas Protocol life cycle impact methods were conducted to measure the impact categories. The construction and demolition phases were considered for recycling potential assessment, while the operational phase was examined for assessing the advantages of energy recovery. Metal and concrete recycling show environmental benefits. Increasing the reprocessing rate requires more water consumption but results in: firstly, a decrease of 18.8% in total damage; secondly, reduces problematic mineral scarcity by 3.9%; and thirdly, a shortfall in fossil fuels amounting to 11.6%. Recycling concrete helps to reduce the amount of GHG emissions 1.4-fold. Different biogas treatment methods contribute to various outcomes. Biogas utilization for on-site energy purposes has more advantages than flaring and offsite consumption. Electricity and heat generation originating from biogas can provide 70% of the energy requirement and replace 100% natural gas usage. Biomethane production from biogas requires extreme power and more resources. Meanwhile, producing heat and electricity can offset 102.9 g of fossil CO2, and manufacturing biomethane contributes the equivalent of 101.2 g of fossil fuel-derived CO2. Reducing 10% of recovered electricity creation could rise 19.19% global warming indicator of the wastewater treatment plant.

12.
J Environ Manage ; 284: 112040, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571854

RESUMO

Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively.


Assuntos
Gerenciamento de Resíduos , Animais , Biocombustíveis , Biotecnologia , Gorduras , Indústria Alimentícia , Resíduos Industriais
13.
J Hazard Mater ; 413: 125426, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621772

RESUMO

This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P < 0.05). The results obtained from the designed systems were further subject to machine learning to clarify the effecting factors and predict the effluents. The optimal algorithms were random forest, generalized linear model, and support vector machine. The values of the coefficient of determination (R2) and the root mean square error (RMSE) of whole fitting data achieved 74.0% and 5.0 mg.L-1, 80.0% and 0.3 mg.L-1, 90.1% and 2.9 mg.L-1, and 48.5% and 0.5 mg.L-1 for BOD5_VF1, NH4-N_VF1, BOD5_VF2, and NH4-N_VF2, respectively.


Assuntos
Águas Residuárias , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal , Argila , Aprendizado de Máquina , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
14.
Environ Sci Pollut Res Int ; 28(1): 220-234, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803616

RESUMO

The current work is about analysis and multi-objective optimization (MOO) of weir-type solar still systems equipped with phase change material (PCM) regarding the exergetic and economic performance. To do so, the energetic and exergetic modeling of the suggested system is conducted then the substantial economic factors is applied to obtain the total cost rate of the considered SSDS. The total exergetic efficiency and total annual cost (TAC) is considered objective functions. Four parameters include mass of the PCM (mPCM), inlet brine water flow rate ([Formula: see text]), gap distance (d), and insulation width (xins) is chosen as decision variables. Moreover, a genetic algorithm-based MOO was applied to find the optimum states of evaluated solar still unit. The outputs represented that increasing the brine feed water mass flow rate does not affect the TAC while decreasing distilled water production rate. The scattered distribution of optimum states infers that the optimum value of PCM mass is about 1 kg. In addition, applied MOO reveals that with optimization of the studied system, the exergy efficiency increases about 1.47% and the annual distilled water increases 4.35% compared with the non-optimized system. The suggested system is capable to produce fresh water in remote areas without any pollution as well as in a low cost rate.


Assuntos
Parafina , Purificação da Água , Luz Solar , Água
15.
Chemosphere ; 265: 129076, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248735

RESUMO

Nitrogen removal is crucial in wastewater treatment process as excessive nitrogen content could result in eutrophication and degradation of aquatic ecosystems. Moreover, to satisfy the fast-growing need of fertilizers due to an increase in human population, recovering nitrogen from wastewater is of the most sustainable approach. Currently, the membrane technique integrated with biological processes namely bio-membrane based integrated system (BMIS) is a promising technology for recovering nitrogen from wastewater, including osmotic membrane bioreactors, bioelectrochemical systems and membrane photobioreactors. In this review study, the nitrogen recovery in different BMHSs, the role of operational parameters and the nitrogen recovery mechanism were discussed. Apart from this, the implementation of nitrogen recovery at pilot- and full-scale was summarized. Perspectives on the major challenges and recommendations of the BMIS for the nitrogen recovery in wastewater treatment were proposed, in which the integrated technologies and more scale-up studies regarding nitrogen recovery by the BMISs were also highlighted and recommended.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Ecossistema , Fertilizantes , Humanos , Osmose , Eliminação de Resíduos Líquidos
16.
Sci Total Environ ; 756: 144133, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33279188

RESUMO

Microbial fuel cell (MFC) systems are promising technologies for wastewater treatment and renewable energy generation simultaneously. Performance of a double-chamber microbial fuel cell (MFC) to treat synthetic swine wastewater containing sulfonamide antibiotics (SMs) was evaluated in this study. The MFC was operated in continuous modes at different conditions. Results indicated that the current was successfully generated during the operation. The performance of MFC under the sequential anode-cathode operating mode is better than that under the single continuous running mode. Specifically, higher removal efficiency of chemical oxygen demand (>90%) was achieved under the sequential anode-cathode operating mode in comparison with that in the single continuous mode (>80%). Nutrients were also be removed in the MFC's cathode chamber with the maximum removal efficiency of 66.6 ± 1.4% for NH4+-N and 32.1 ± 2.8% for PO43--P. Meanwhile, SMs were partly removed in the sequential anode-cathode operating with the value in a range of 49.4%-59.4% for sulfamethoxazole, 16.8%-19.5% for sulfamethazine and 14.0%-16.3% for sulfadiazine, respectively. SMs' inhibition to remove other pollutants in both electrodes of MFC was observed after SMs exposure, suggesting that SMs exert toxic effects on the microorganisms. A positive correlation was found between the higher NH4+-N concentration used in this study and the removal efficiency of SMs in the cathode chamber. In short, although the continuous flow MFC is feasible for treating swine wastewater containing antibiotics, its removal efficiency of antibiotics requires to be further improved.


Assuntos
Fontes de Energia Bioelétrica , Animais , Antibacterianos , Eletricidade , Eletrodos , Suínos , Águas Residuárias
17.
Bioresour Technol ; 319: 124160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33010716

RESUMO

Sulfonamide antibiotics (SMs), as a class of antibiotics commonly used in swine industries, pose a serious threat to animal and human health. This study aims to evaluate the performance of an anaerobic membrane bioreactor (AnMBR) with and without supplying a new pomelo peel derived biochar to treat swine wastewater containing SMs. Results show that 0.5 g/L biochar addition could increase more than 30% of sulfadiazine (SDZ) and sulfamethazine (SMZ) removal in AnMBR. Approximately 95% of chemical oxygen demand (COD) was removed in the AnMBR at an influent organic loading rate (OLR) of 3.27 kg COD/(m3·d) while an average methane yield was 0.2 L/g CODremoved with slightly change at a small dose 0.5 g/L biochar addition. SMs inhibited the COD removal and methane production and increased membrane fouling. The addition of biochar could reduce the membrane fouling by reducing the concentration of SMP and EPS.


Assuntos
Antibacterianos , Águas Residuárias , Anaerobiose , Animais , Reatores Biológicos , Carvão Vegetal , Membranas Artificiais , Sulfonamidas , Suínos , Eliminação de Resíduos Líquidos
18.
Front Cell Dev Biol ; 8: 574466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043007

RESUMO

Accurate DNA replication is essential for maintaining genome stability. However, this stability becomes vulnerable when replication fork progression is stalled or slowed - a condition known as replication stress. Prolonged fork stalling can cause DNA damage, leading to genome instabilities. Thus, cells have developed several pathways and a complex set of proteins to overcome the challenge at stalled replication forks. Oligonucleotide/oligosaccharide binding (OB)-fold containing proteins are a group of proteins that play a crucial role in fork protection and fork restart. These proteins bind to single-stranded DNA with high affinity and prevent premature annealing and unwanted nuclease digestion. Among these OB-fold containing proteins, the best studied in eukaryotic cells are replication protein A (RPA) and breast cancer susceptibility protein 2 (BRCA2). Recently, another RPA-like protein complex CTC1-STN1-TEN1 (CST) complex has been found to counter replication perturbation. In this review, we discuss the latest findings on how these OB-fold containing proteins (RPA, BRCA2, CST) cooperate to safeguard DNA replication and maintain genome stability.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33070293

RESUMO

The failure of the centralized water supply system forced XY community to become more dependent on uncertain and unstable water sources. The results of surveying 50 households showed that 89.18% of total households depended on water collected from rivers, which contributed 58.3% of the total water volume used for the domestic demands. The average water volume consumed was 19.5 liters/person/day (l/p/d), and 86.5% of households used more than one source; 13.5% of households collected water only from rivers, and 45.94% of families had rainwater harvesting (RWH) for their activities (domestic water demand); however, RWH only provided 9.9% of total water consumption. In this study, basic methods were applied to calculate the storage tanks necessary to balance the water deficit created by drought months. Three levels of water demand (14, 20, and 30 l/p/d) can be the best choices for RWH; for a higher demand (40 and 60 l/p/d), small roof area (30-40 m2), and many people (six to seven) per family, RWH might be impractical because of unsuitable rainfall or excessively large storage tanks.

20.
J Environ Manage ; 276: 111279, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891031

RESUMO

Recently, the microbial fuel cell-based biosensor has been considered as an attractive technology for measuring wastewater quality such as biochemical oxygen demand (BOD). In this study, a mediator-less double compartment MFC based biosensor utilizing carbon felt as an anode electrode and inoculated with mixed culture was developed to improve the real application of a rapid BOD detection. This study aims to: (i) establish the effect of the operating conditions (i.e., pH, external resistance, fuel feeding rate) on MFC performance; (ii) investigate the correlation between biochemical oxygen demand (BOD) and signal output, and (iii) evaluate the operational stability of the biosensor. The presented result reveals that the maximum current and power production was obtained while 100 mM NaCl and 50 mM Phosphate buffer saline was used as a catholyte solution, neutral pH condition of media and fuel feeding rate at 0.3 mL min-1. Notably, a wider range of BOD concentration up to 300 mg L -1 can be obtained with the voltage output (R2 > 0.9901). Stable and steady power was produced by running MFC in 30 days when cells operated at 1000 Ω external resistance. Our research has some competition with the previous double chamber MFC in the upper limit of BOD detection. This results might help to increase the real application of MFC based BOD biosensor in real-time measurement.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Análise da Demanda Biológica de Oxigênio , Eletrodos , Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...