Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Gut ; 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964751

RESUMO

OBJECTIVE: Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN: A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS: Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION: Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.

2.
Am J Clin Nutr ; 111(2): 406-419, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851298

RESUMO

BACKGROUND: Alaska Native (AN) people have the world's highest recorded incidence of sporadic colorectal cancer (CRC) (∼91:100,000), whereas rural African (RA) people have the lowest risk (<5:100,000). Previous data supported the hypothesis that diet affected CRC risk through its effects on the colonic microbiota that produce tumor-suppressive or -promoting metabolites. OBJECTIVES: We investigated whether differences in these metabolites may contribute to the high risk of CRC in AN people. METHODS: A cross-sectional observational study assessed dietary intake from 32 AN and 21 RA healthy middle-aged volunteers before screening colonoscopy. Analysis of fecal microbiota composition by 16S ribosomal RNA gene sequencing and fecal/urinary metabolites by 1H-NMR spectroscopy was complemented with targeted quantification of fecal SCFAs, bile acids, and functional microbial genes. RESULTS: Adenomatous polyps were detected in 16 of 32 AN participants, but not found in RA participants. The AN diet contained higher proportions of fat and animal protein and less fiber. AN fecal microbiota showed a compositional predominance of Blautia and Lachnoclostridium, higher microbial capacity for bile acid conversion, and low abundance of some species involved in saccharolytic fermentation (e.g., Prevotellaceae, Ruminococcaceae), but no significant lack of butyrogenic bacteria. Significantly lower concentrations of tumor-suppressive butyrate (22.5 ± 3.1 compared with 47.2 ± 7.3 SEM µmol/g) coincided with significantly higher concentrations of tumor-promoting deoxycholic acid (26.7 ± 4.2 compared with 11 ± 1.9 µmol/g) in AN fecal samples. AN participants had lower quantities of fecal/urinary metabolites than RA participants and metabolite profiles correlated with the abundance of distinct microbial genera in feces. The main microbial and metabolic CRC-associated markers were not significantly altered in AN participants with adenomatous polyps. CONCLUSIONS: The low-fiber, high-fat diet of AN people and exposure to carcinogens derived from diet or environment are associated with a tumor-promoting colonic milieu as reflected by the high rates of adenomatous polyps in AN participants.


Assuntos
Grupo com Ancestrais do Continente Africano , Nativos do Alasca , Bactérias/metabolismo , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Bactérias/classificação , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Estudos Transversais , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , População Rural
3.
Sci Transl Med ; 11(518)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723038

RESUMO

The gut microbiota evolves as the host ages, yet the effects of these microbial changes on host physiology and energy homeostasis are poorly understood. To investigate these potential effects, we transplanted the gut microbiota of old or young mice into young germ-free recipient mice. Both groups showed similar weight gain and skeletal muscle mass, but germ-free mice receiving a gut microbiota transplant from old donor mice unexpectedly showed increased neurogenesis in the hippocampus of the brain and increased intestinal growth. Metagenomic analysis revealed age-sensitive enrichment in butyrate-producing microbes in young germ-free mice transplanted with the gut microbiota of old donor mice. The higher concentration of gut microbiota-derived butyrate in these young transplanted mice was associated with an increase in the pleiotropic and prolongevity hormone fibroblast growth factor 21 (FGF21). An increase in FGF21 correlated with increased AMPK and SIRT-1 activation and reduced mTOR signaling. Young germ-free mice treated with exogenous sodium butyrate recapitulated the prolongevity phenotype observed in young germ-free mice receiving a gut microbiota transplant from old donor mice. These results suggest that gut microbiota transplants from aged hosts conferred beneficial effects in responsive young recipients.

4.
Trends Pharmacol Sci ; 40(10): 763-773, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31511194

RESUMO

Understanding metabotype (multicomponent metabolic characteristics) variation can help to generate new diagnostic and prognostic biomarkers, as well as models, with potential to impact on patient management. We present a suite of conceptual approaches for the generation, analysis, and understanding of metabotypes from body fluids and tissues. We describe and exemplify four fundamental approaches to the generation and utilization of metabotype data via multiparametric measurement of (i) metabolite levels, (ii) metabolic trajectories, (iii) metabolic entropies, and (iv) metabolic networks and correlations in space and time. This conceptual framework can underpin metabotyping in the scenario of personalized medicine, with the aim of improving clinical outcomes for patients, but the framework will have value and utility in areas of metabolic profiling well beyond this exemplar.

5.
JAMA Netw Open ; 2(9): e1911970, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539079

RESUMO

Importance: Chinese women have the highest rate of lung cancer among female never-smokers in the world, and the etiology is poorly understood. Objective: To assess the association between metabolomics and lung cancer risk among never-smoking women. Design, Setting, and Participants: This nested case-control study included 275 never-smoking female patients with lung cancer and 289 never-smoking cancer-free control participants from the prospective Shanghai Women's Health Study recruited from December 28, 1996, to May 23, 2000. Validated food frequency questionnaires were used for the collection of dietary information. Metabolomic analysis was conducted from November 13, 2015, to January 6, 2016. Data analysis was conducted from January 6, 2016, to November 29, 2018. Exposures: Untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance metabolomic profiles were characterized using prediagnosis urine samples. A total of 39 416 metabolites were measured. Main Outcomes and Measures: Incident lung cancer. Results: Among the 564 women, those who developed lung cancer (275 participants; median [interquartile range] age, 61.0 [52-65] years) and those who did not develop lung cancer (289 participants; median [interquartile range] age, 62.0 [53-66] years) at follow-up (median [interquartile range] follow-up, 10.9 [9.0-11.7] years) were similar in terms of their secondhand smoke exposure, history of respiratory diseases, and body mass index. A peak metabolite, identified as 5-methyl-2-furoic acid, was significantly associated with lower lung cancer risk (odds ratio, 0.57 [95% CI, 0.46-0.72]; P < .001; false discovery rate = 0.039). Furthermore, this peak was weakly correlated with self-reported dietary soy intake (ρ = 0.21; P < .001). Increasing tertiles of this metabolite were associated with lower lung cancer risk (in comparison with first tertile, odds ratio for second tertile, 0.52 [95% CI, 0.34-0.80]; and odds ratio for third tertile, 0.46 [95% CI, 0.30-0.70]), and the association was consistent across different histological subtypes and follow-up times. Additionally, metabolic pathway analysis found several systemic biological alterations that were associated with lung cancer risk, including 1-carbon metabolism, nucleotide metabolism, oxidative stress, and inflammation. Conclusions and Relevance: This prospective study of the untargeted urinary metabolome and lung cancer among never-smoking women in China provides support for the hypothesis that soy-based metabolites are associated with lower lung cancer risk in never-smoking women and suggests that biological processes linked to air pollution may be associated with higher lung cancer risk in this population.

6.
Bioinformatics ; 35(24): 5359-5360, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350543

RESUMO

SUMMARY: As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines. AVAILABILITY AND IMPLEMENTATION: The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.

7.
J Chromatogr A ; 1602: 386-396, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31285057

RESUMO

A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1-2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metaboloma , Urina/química , Aminas/análise , Animais , Calibragem , Aprendizado de Máquina , Ratos , Padrões de Referência
8.
Faraday Discuss ; 218(0): 395-416, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31116193

RESUMO

Metabolite identification and annotation procedures are necessary for the discovery of biomarkers indicative of phenotypes or disease states, but these processes can be bottlenecked by the sheer complexity of biofluids containing thousands of different compounds. Here we describe low-cost novel SPE-NMR protocols utilising different cartridges and conditions, on both natural and artificial urine mixtures, which produce unique retention profiles useful for metabolic profiling. We find that different SPE methods applied to biofluids such as urine can be used to selectively retain metabolites based on compound taxonomy or other key functional groups, reducing peak overlap through concentration and fractionation of unknowns and hence promising greater control over the metabolite annotation/identification process.

9.
Eur Heart J ; 40(34): 2883-2896, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31102408

RESUMO

AIMS: To characterize serum metabolic signatures associated with atherosclerosis in the coronary or carotid arteries and subsequently their association with incident cardiovascular disease (CVD). METHODS AND RESULTS: We used untargeted one-dimensional (1D) serum metabolic profiling by proton nuclear magnetic resonance spectroscopy (1H NMR) among 3867 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), with replication among 3569 participants from the Rotterdam and LOLIPOP studies. Atherosclerosis was assessed by coronary artery calcium (CAC) and carotid intima-media thickness (IMT). We used multivariable linear regression to evaluate associations between NMR features and atherosclerosis accounting for multiplicity of comparisons. We then examined associations between metabolites associated with atherosclerosis and incident CVD available in MESA and Rotterdam and explored molecular networks through bioinformatics analyses. Overall, 30 1H NMR measured metabolites were associated with CAC and/or IMT, P = 1.3 × 10-14 to 1.0 × 10-6 (discovery) and P = 5.6 × 10-10 to 1.1 × 10-2 (replication). These associations were substantially attenuated after adjustment for conventional cardiovascular risk factors. Metabolites associated with atherosclerosis revealed disturbances in lipid and carbohydrate metabolism, branched chain, and aromatic amino acid metabolism, as well as oxidative stress and inflammatory pathways. Analyses of incident CVD events showed inverse associations with creatine, creatinine, and phenylalanine, and direct associations with mannose, acetaminophen-glucuronide, and lactate as well as apolipoprotein B (P < 0.05). CONCLUSION: Metabolites associated with atherosclerosis were largely consistent between the two vascular beds (coronary and carotid arteries) and predominantly tag pathways that overlap with the known cardiovascular risk factors. We present an integrated systems network that highlights a series of inter-connected pathways underlying atherosclerosis.

10.
J Proteome Res ; 18(5): 2160-2174, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30939873

RESUMO

Obesity and its comorbidities are increasing worldwide imposing a heavy socioeconomic burden. The effects of obesity on the metabolic profiles of tissues (liver, kidney, pancreas), urine, and the systemic circulation were investigated in the Zucker rat model using 1H NMR spectroscopy coupled to multivariate statistical analysis. The metabolic profiles of the obese ( fa/ fa) animals were clearly differentiated from the two phenotypically lean phenotypes, ((+/+) and ( fa/+)) within each biological compartment studied, and across all matrices combined. No significant differences were observed between the metabolic profiles of the genotypically distinct lean strains. Obese Zucker rats were characterized by higher relative concentrations of blood lipid species, cross-compartmental amino acids (particularly BCAAs), urinary and liver metabolites relating to the TCA cycle and glucose metabolism; and lower amounts of urinary gut microbial-host cometabolites, and intermatrix metabolites associated with creatine metabolism. Further to this, the obese Zucker rat metabotype was defined by significant metabolic alterations relating to disruptions in the metabolism of choline across all compartments analyzed. The cage environment was found to have a significant effect on urinary metabolites related to gut-microbial metabolism, with additional cage-microenvironment trends also observed in liver, kidney, and pancreas. This study emphasizes the value in metabotyping multiple biological matrices simultaneously to gain a better understanding of systemic perturbations in metabolism, and also underscores the need for control or evaluation of cage environment when designing and interpreting data from metabonomic studies in animal models.

11.
Sci Rep ; 9(1): 3656, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842494

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. To disentangle etiological relationships between these conditions and identify genetically-determined metabolites involved in NAFLD processes, we mapped 1H nuclear magnetic resonance (NMR) metabolomic and disease-related phenotypes in a mouse F2 cross derived from strains showing resistance (BALB/c) and increased susceptibility (129S6) to these diseases. Quantitative trait locus (QTL) analysis based on single nucleotide polymorphism (SNP) genotypes identified diet responsive QTLs in F2 mice fed control or high fat diet (HFD). In HFD fed F2 mice we mapped on chromosome 18 a QTL regulating liver micro- and macrovesicular steatosis and inflammation, independently from glucose intolerance and adiposity, which was linked to chromosome 4. Linkage analysis of liver metabolomic profiling data identified a QTL for octopamine, which co-localised with the QTL for liver histopathology in the cross. Functional relationship between these two QTLs was validated in vivo in mice chronically treated with octopamine, which exhibited reduction in liver histopathology and metabolic benefits, underlining its role as a mechanistic biomarker of fatty liver with potential therapeutic applications.

12.
Anal Chem ; 91(8): 5207-5216, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30848589

RESUMO

A targeted ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-ESI-MS/MS) method has been developed for the quantification of tryptophan and its downstream metabolites from the kynurenine and serotonin pathways. The assay coverage also includes markers of gut health and inflammation, including citrulline and neopterin. The method was designed in 96-well plate format for application in multiday, multiplate clinical and epidemiology population studies. A chromatographic cycle time of 7 min enables the analysis of two 96-well plates in 24 h. To protect chromatographic column lifespan, samples underwent a two-step extraction, using solvent protein precipitation followed by delipidation via solid-phase extraction (SPE). Analytical validation reported accuracy of each analyte <20% for the lowest limit of quantification and <15% for all other quality control (QC) levels. The analytical precision for each analyte was 2.1-12.9%. To test the applicability of the method to multiplate and multiday preparations, a serum pool underwent periodic repeat analysis during a run consisting of 18 plates. The % CV (coefficient of variation) values obtained for each analyte were <15%. Additional biological testing applied the assay to samples collected from healthy control participants and two groups diagnosed with inflammatory bowel disease (IBD) (one group treated with the anti-inflammatory 5-aminosalicylic acid (5-ASA) and one group untreated), with results showing significant differences in the concentrations of picolinic acid, kynurenine, and xanthurenic acid. The short analysis time and 96-well plate format of the assay makes it suitable for high-throughput targeted UHPLC-ESI-MS/MS metabolomic analysis in large-scale clinical and epidemiological population studies.

13.
Lipids Health Dis ; 18(1): 38, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711004

RESUMO

BACKGROUND: Lipoproteins are major players in the development and progression of atherosclerotic plaques leading to coronary stenosis and myocardial infarction. Epidemiological, genetic and experimental observations have implicated the association of sphingolipids and intermediates of sphingolipid synthesis in atherosclerosis. We aimed to investigate relationships between quantitative changes in serum sphingolipids, the regulation of the metabolism of lipoproteins (LDL, HDL), and endophenotypes of coronary artery disease (CAD). METHODS: We carried out untargeted liquid chromatography - mass spectrometry (UPLC-MS) lipidomics of serum samples of subjects belonging to a cross-sectional study and recruited on the basis of absence or presence of angiographically-defined CAD, and extensively characterized for clinical and biochemical phenotypes. RESULTS: Among the 2998 spectral features detected in the serum samples, 1328 metabolic features were significantly correlated with at least one of the clinical or biochemical phenotypes measured in the cohort. We found evidence of significant associations between 34 metabolite signals, corresponding to a set of sphingomyelins, and serum HDL cholesterol. Many of these metabolite associations were also observed with serum LDL and total cholesterol levels but not as much with serum triglycerides. CONCLUSION: Among patients with CAD, sphingolipids in the form of sphingomyelins are directly correlated with serum levels of lipoproteins and total cholesterol. Results from this study support the fundamental role of sphingolipids in modulating lipid serum levels, highlighting the importance to identify novel targets in the sphingolipid metabolic pathway for anti-atherogenic therapies.


Assuntos
Colesterol/sangue , Esfingomielinas/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Masculino , Espectrometria de Massas , Metabolômica/instrumentação , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto Jovem
14.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1106-1107: 50-57, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640163

RESUMO

A UPLC-MS/MS assay, employing a reversed-phase separation, has been applied to the analysis of a number of common amino acids and biogenic amines in rat urine. Analytes were derivatised, using 6­aminoquinolyl­N­hydroxysuccinimidyl carbamate (AccQTag Ultra™). Derivatisation with this reagent, by increasing the hydrophobicity of the analytes, enables better retention by improving reversed-phase chromatographic properties and also improves ionisation efficiency to enhance MS-detection. The method allows for the determination of 38 amino compounds in 7.5 min, including baseline resolution of critical isomers. The assay has been validated for the absolute quantification of 29 amino compounds in rat urine, over a concentration range of 0.6-200 µM, for the purpose of exploratory metabolite phenotyping. Acceptable linearity (R2 > 0.995) and intra- and inter-day accuracy (<20.7%) and precision (<20.1%) for these analytes was achieved. The limits of detection ranged from 1.2-12 fmol on column with 20 µL of sample. The remaining nine amines examined were not accurately quantified by this method but can be monitored for relative/fold change in biological samples. The use of the method is exemplified by the monitoring of changes in healthy male Sprague-Dawley rat urinary amino acid concentrations over a 7-day period.


Assuntos
Aminoácidos/urina , Aminas Biogênicas/urina , Bioensaio , Aminoquinolinas , Animais , Bioensaio/métodos , Carbamatos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
15.
Bioinformatics ; 35(11): 1916-1922, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351417

RESUMO

MOTIVATION: Data processing is a key bottleneck for 1H NMR-based metabolic profiling of complex biological mixtures, such as biofluids. These spectra typically contain several thousands of signals, corresponding to possibly few hundreds of metabolites. A number of binning-based methods have been proposed to reduce the dimensionality of 1 D 1H NMR datasets, including statistical recoupling of variables (SRV). Here, we introduce a new binning method, named JBA ("pJRES Binning Algorithm"), which aims to extend the applicability of SRV to pJRES spectra. RESULTS: The performance of JBA is comprehensively evaluated using 617 plasma 1H NMR spectra from the FGENTCARD cohort. The results presented here show that JBA exhibits higher sensitivity than SRV to detect peaks from low-abundance metabolites. In addition, JBA allows a more efficient removal of spectral variables corresponding to pure electronic noise, and this has a positive impact on multivariate model building. AVAILABILITY AND IMPLEMENTATION: The algorithm is implemented using the MWASTools R/Bioconductor package. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

16.
Thorax ; 74(4): 380-389, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30478197

RESUMO

BACKGROUND: Aberrant lipoprotein metabolism has been implicated in experimental pulmonary hypertension, but the relevance to patients with pulmonary arterial hypertension (PAH) is inconclusive. OBJECTIVE: To investigate the relationship between circulating lipoprotein subclasses and survival in patients with PAH. METHODS: Using nuclear magnetic resonance spectroscopy, 105 discrete lipoproteins were measured in plasma samples from two cohorts of patients with idiopathic or heritable PAH. Data from 1124 plasma proteins were used to identify proteins linked to lipoprotein subclasses. The physical presence of proteins was confirmed in plasma lipoprotein subfractions separated by ultracentrifugation. RESULTS: Plasma levels of three lipoproteins from the small high-density lipoprotein (HDL) subclass, termed HDL-4, were inversely related to survival in both the discovery (n=127) and validation (n=77) cohorts, independent of exercise capacity, comorbidities, treatment, N-terminal probrain natriuretic peptide, C reactive protein and the principal lipoprotein classes. The small HDL subclass rich in apolipoprotein A-2 content (HDL-4-Apo A-2) exhibited the most significant association with survival. None of the other lipoprotein classes, including principal lipoprotein classes HDL and low-density lipoprotein cholesterol, were prognostic. Three out of nine proteins identified to associate with HDL-4-Apo A-2 are involved in the regulation of fibrinolysis, namely, the plasmin regulator, alpha-2-antiplasmin, and two major components of the kallikrein-kinin pathway (coagulation factor XI and prekallikrein), and their physical presence in the HDL-4 subfraction was confirmed. CONCLUSION: Reduced plasma levels of small HDL particles transporting fibrinolytic proteins are associated with poor outcomes in patients with idiopathic and heritable PAH.


Assuntos
Hipertensão Pulmonar/sangue , Lipoproteínas HDL/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Fibrinólise/fisiologia , Hemodinâmica/fisiologia , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Estimativa de Kaplan-Meier , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Prognóstico , Proteoma
17.
Xenobiotica ; 49(11): 1352-1359, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30557119

RESUMO

1. The metabolic fate and urinary excretion of 2-bromophenol, a phenolic metabolite of bromobenzene, was investigated in male Sprague-Dawley rats following single intraperitoneal doses at either 0, 100, or 200 mg/kg.2. Urine was collected for seven days and samples analysed using 1 H NMR spectroscopy, inductively coupled plasma (ICP)MS, and UPLC-MS.3. 1 H NMR spectroscopy of the urine samples showed that, at these doses, 2-bromophenol had little effect on endogenous metabolite profiles, supporting histopathology and clinical chemistry data, which showed no changes associated with the administration of 2-bromophenol in this study.4. The use of ICP-MS provided a means for the selective detection and quantification of bromine-containing species and showed that between 15 and 30% of the dose was excreted via the urine over 7 days of the study for both the 100 and 200 mg doses, respectively.5. The bulk of the excretion of Br-containing material had occurred by 8 h post administration. UPLC-MS of urine revealed a number of metabolites of 2-bromophenol, with 2-bromophenol glucuronide and 2-bromophenol sulphate identified as the major species. A number of minor hydroxylated metabolites were also detected as their glucuronide, sulphate, or O-methyl conjugates. There was no evidence for the production of reactive metabolites.

18.
Bioinformatics ; 35(1): 178-180, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010780

RESUMO

Summary: SPUTNIK is an R package consisting of a series of tools to filter mass spectrometry imaging peaks characterized by a noisy or unlikely spatial distribution. SPUTNIK can produce mass spectrometry imaging datasets characterized by a smaller but more informative set of peaks, reduce the complexity of subsequent multi-variate analysis and increase the interpretability of the statistical results. Availability and implementation: SPUTNIK is freely available online from CRAN repository and at https://github.com/paoloinglese/SPUTNIK. The package is distributed under the GNU General Public License version 3 and is accompanied by example files and data. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Espectrometria de Massas , Software
19.
Anal Chem ; 90(20): 11962-11971, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30211542

RESUMO

We report an extensive 600 MHz NMR trial of quantitative lipoprotein and small-molecule measurements in human blood serum and plasma. Five centers with eleven 600 MHz NMR spectrometers were used to analyze 98 samples including 20 quality controls (QCs), 37 commercially sourced, paired serum and plasma samples, and two National Institute of Science and Technology (NIST) reference material 1951c replicates. Samples were analyzed using rigorous protocols for sample preparation and experimental acquisition. A commercial lipoprotein subclass analysis was used to quantify 105 lipoprotein subclasses and 24 low molecular weight metabolites from the NMR spectra. For all spectrometers, the instrument specific variance in measuring internal QCs was lower than the percentage described by the National Cholesterol Education Program (NCEP) criteria for lipid testing [triglycerides <2.7%; cholesterol <2.8%; low-density lipoprotein (LDL) cholesterol <2.8%; high-density lipoprotein (HDL) cholesterol <2.3%], showing exceptional reproducibility for direct quantitation of lipoproteins in both matrixes. The average relative standard deviations (RSDs) for the 105 lipoprotein parameters in the 11 instruments were 4.6% and 3.9% for the two NIST samples, whereas they were 38% and 40% for the 37 commercially sourced plasmas and sera, respectively, showing negligible analytical compared to biological variation. The coefficient of variance (CV) obtained for the quantification of the small molecules across the 11 spectrometers was below 15% for 20 out of the 24 metabolites analyzed. This study provides further evidence of the suitability of NMR for high-throughput lipoprotein subcomponent analysis and small-molecule quantitation with the exceptional required reproducibility for clinical and other regulatory settings.


Assuntos
Lipoproteínas/sangue , Ressonância Magnética Nuclear Biomolecular , Humanos , Laboratórios , Lipoproteínas/metabolismo , Peso Molecular , Prótons , Controle de Qualidade
20.
J Proteome Res ; 17(10): 3492-3502, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30183320

RESUMO

The application of metabolic phenotyping to epidemiological studies involving thousands of biofluid samples presents a challenge for the selection of analytical platforms that meet the requirements of high-throughput precision analysis and cost-effectiveness. Here direct infusion-nanoelectrospray (DI-nESI) was compared with an ultra-performance liquid chromatography (UPLC)-high-resolution mass spectrometry (HRMS) method for metabolic profiling of an exemplary set of 132 human urine samples from a large epidemiological cohort. Both methods were developed and optimized to allow the simultaneous collection of high-resolution urinary metabolic profiles and quantitative data for a selected panel of 35 metabolites. The total run time for measuring the sample set in both polarities by UPLC-HRMS was 5 days compared with 9 h by DI-nESI-HRMS. To compare the classification ability of the two MS methods, we performed exploratory analysis of the full-scan HRMS profiles to detect sex-related differences in biochemical composition. Although metabolite identification is less specific in DI-nESI-HRMS, the significant features responsible for discrimination between sexes were mostly the same in both MS-based platforms. Using the quantitative data, we showed that 10 metabolites have strong correlation (Pearson's r > 0.9 and Passing-Bablok regression slope of 0.8-1.3) and good agreement assessed by Bland-Altman plots between UPLC-HRMS and DI-nESI-HRMS and thus can be measured using a cheaper and less sample- and time-consuming method. A further twenty metabolites showed acceptable correlation between the two methods with only five metabolites showing weak correlation (Pearson's  r < 0.4) and poor agreement due to the overestimation of the results by DI-nESI-HRMS.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Alanina/urina , Creatina/urina , Creatinina/urina , Feminino , Humanos , Hipertensão/metabolismo , Hipertensão/urina , Ácido Láctico/urina , Masculino , Pessoa de Meia-Idade , Nanotecnologia/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA