Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4467, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918359

RESUMO

Fluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas. Here we show that Tl isotope ratios are unique tracers of HESC contribution to Kamchatka arc magma sources. In conjunction with trace element ratios and literature data, we trace the progressive dehydration and melting of subducted HESC across the Kamchatka arc. In succession, serpentine (<100 km depth), lawsonite (100-250 km depth) and phengite (>250 km depth) break down and produce fluids that contribute to arc magmatism at the Eastern Volcanic Front (EVF), Central Kamchatka Depression (CKD), and Sredinny Ridge (SR), respectively. However, given the Tl-poor nature of serpentine and lawsonite fluids, simultaneous melting of subducted HESC is required to explain the HESC-like Tl isotope signatures observed in EVF and CKD lavas. In the absence of eclogitic crust melting processes in this region of the Kamchatka arc, we propose that progressive dehydration and melting of a HESC-dominated mélange offers the most compelling interpretation of the combined isotope and trace element data.

2.
Environ Sci Technol ; 55(8): 4813-4821, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33755433

RESUMO

Vanadium, a potentially toxic metal, is enriched in the environment from anthropogenic releases, particularly during fossil fuel production and use and steel manufacturing. Metal stable isotopes are sophisticated tools to trace pollution; however, only recent analytical advances have allowed for the accurate and precise measurement of vanadium isotope ratios (δ51V). To examine its potential as a tracer in terrestrial and aquatic ecosystems, δ51V was measured in soil, plant, lichen, marten, and lake sediment from sites near vanadium emissions at oil sands mines (Alberta, Canada) and in the sediment and biota (algae, zooplankton, fish) from a remote subarctic lake (Northwest Territories, Canada). Samples from Alberta had distinct δ51V values with marten liver the lowest (-1.7 ± 0.3‰), followed by lichen (-0.9 ± 0.1‰), soil (-0.7 ± 0.1‰), sediment (-0.5 ± 0.2‰), and plant root (-0.3 ± 0.2‰). Average values were lower than Alberta bitumen and petroleum coke (-0.1 ± 0.1‰). Plant roots had systematically higher δ51V than the soil from which they grew (Δ51Vplant-soil = 0.4 ± 0.1‰), while δ51V of lichen and aquatic biota were lower (0.1-0.3‰) than likely crustal sources. These δ51V measurements in terrestrial and aquatic biota demonstrate promise for tracer applications, although further study of its biological fractionation is needed.


Assuntos
Cadeia Alimentar , Poluentes Químicos da Água , Alberta , Animais , Biota , Isótopos de Carbono , Ecossistema , Monitoramento Ambiental , Isótopos/análise , Territórios do Noroeste , Campos de Petróleo e Gás , Vanádio , Poluentes Químicos da Água/análise
3.
Nat Commun ; 12(1): 1817, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753746

RESUMO

Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.

4.
Sci Adv ; 7(40): eabg8329, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586847

RESUMO

Calcium-aluminum­rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V­10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V­10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.

5.
Geobiology ; 18(3): 348-365, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32011800

RESUMO

Ediacaran sediments record an unusual global carbon cycle perturbation that has been linked to widespread oceanic oxygenation, the Shuram negative C isotope excursion (NCIE). However, proxy-based estimates of global ocean redox conditions during this event have been limited largely due to proxy specificity (e.g., euxinic sediments for Mo and U isotopes). Modern global seawater documents a homogenous Tl isotope composition (ε205 Tl = -6.0) due to significant manganese oxide burial, which is recorded in modern euxinic sediments. Here, we provide new data documenting that sediments deposited beneath reducing but a non-sulfidic water column from the Santa Barbara Basin (ε205 Tl = -5.6 ± 0.1) also faithfully capture global seawater Tl isotope values. Thus, the proxy utilization of Tl isotopes can extend beyond strictly euxinic settings. Second, to better constrain the global redox conditions during the Shuram NCIE, we measured Tl isotopes of locally euxinic and ferruginous shales of the upper Doushantuo Formation, South China. The ε205 Tl values of these shales exhibit a decreasing trend from ≈-3 to ≈-8, broadly coinciding with the onset of Shuram NCIE. There are ε205 Tl values (-5.1 to -7.8) during the main Shuram NCIE interval that approach values more negative than modern global seawater. These results suggest that manganese oxide burial was near or even greater than modern burial fluxes, which is likely linked to an expansion of oxic conditions. This ocean oxygenation may have been an important trigger for the Shuram NCIE and evolution of Ediacaran-type biota. Subsequently, Tl isotopes show an increasing trend from the modern ocean value to values near the modern global inputs or even heavier (ε205 Tl ≈ -2.5 ~ 0.4), occurring prior to recovery from the NCIE. These records may suggest that there was a decrease in the extent of oxygenated conditions in the global oceans during the late stage of the Shuram NCIE.


Assuntos
Água do Mar/química , China , Sedimentos Geológicos , Isótopos , Oceanos e Mares , Tálio
6.
Nat Geosci ; 12: 186-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30847006

RESUMO

Late Archaean sedimentary rocks contain compelling geochemical evidence for episodic accumulation of dissolved oxygen in the oceans along continental margins before the Great Oxidation Event. However, the extent of this oxygenation remains poorly constrained. Here we present thallium and molybdenum isotope compositions for anoxic organic-rich shales of the 2.5 billion-year-old Mount McRae Shale from Western Australia, which previously yielded geochemical evidence of a transient oxygenation event. During this event, we observe an anti-correlation between thalium and molybdenum isotope data, including two shifts to higher molybdenum and lower thalium isotope compositions. Our data indicate pronounced burial of manganese oxides in sediments elsewhere in the ocean at these times, which requires that water columns above portions of the ocean floor were fully oxygenated: all the way from the air-sea interface to well below the sediment-water interface. Well-oxygenated continental shelves were likely the most important sites of manganese oxide burial and mass-balance modeling results suggest that fully oxygenated water columns were at least a regional-scale feature of early-Earth's oceans 2.5 billion years ago.

7.
Sci Adv ; 4(7): eaas8675, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30009259

RESUMO

The upper mantle, as sampled by mid-ocean ridge basalts (MORBs), exhibits significant chemical variability unrelated to mechanisms of melt extraction at ridges. We show that barium isotope variations in global MORBs vary systematically with radiogenic isotopes and trace element ratios, which reflects mixing between depleted and enriched MORB melts. In addition, modern sediments and enriched MORBs share similar Ba isotope signatures. Using modeling, we show that addition of ~0.1% by weight of sediment components into the depleted mantle in subduction zones must impart a sedimentary Ba signature to the overlying mantle and induce low-degree melting that produces the enriched MORB reservoir. Subsequently, these enriched domains convect toward mid-ocean ridges and produce radiogenic isotope variation typical of enriched MORBs. This mechanism can explain the chemical and isotopic features of enriched MORBs and provide strong evidence for pervasive sediment recycling in the upper mantle.

8.
Proc Natl Acad Sci U S A ; 115(26): 6596-6601, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891692

RESUMO

For this study, we generated thallium (Tl) isotope records from two anoxic basins to track the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma) of the Early Jurassic. The T-OAE, like other Mesozoic OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of ocean water, some 600 ka before the classically defined T-OAE. This antecedent deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset of initial large igneous province (LIP) volcanism and the initiation of a marine mass extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that the duration of widespread anoxic bottom waters was at least 1 million years in duration and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record of marine oxygen depletion and its links to biological change during a period of climatic warming in Earth's past and highlight the role of oxygen depletion on past biological evolution.


Assuntos
Atmosfera/química , Carbono/análise , Mudança Climática/história , Extinção Biológica , Sedimentos Geológicos/química , Compostos Orgânicos/química , Oxigênio , Água do Mar/química , Tálio/análise , Erupções Vulcânicas/história , Organismos Aquáticos , Canadá , Gases de Efeito Estufa , História Antiga , Isótopos/análise , Radioisótopos de Tálio/análise
9.
Nat Commun ; 9(1): 305, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29335586

RESUMO

The original version of this Article contained an error in the barite saturation state equation in the fourth paragraph of the Introduction and incorrectly read 'Ωbarite=({134Ba2+}⋅{SO42-})/Ksp)'. The correct version removes the superscript 134 next to 'Ba2+'. This error has now been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 8(1): 1342, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29109481

RESUMO

Geochemical analyses of sedimentary barites (barium sulfates) in the geological record have yielded fundamental insights into the chemistry of the Archean environment and evolutionary origin of microbial metabolisms. However, the question of how barites were able to precipitate from a contemporary ocean that contained only trace amounts of sulfate remains controversial. Here we report dissolved and particulate multi-element and barium-isotopic data from Lake Superior that evidence pelagic barite precipitation at micromolar ambient sulfate. These pelagic barites likely precipitate within particle-associated microenvironments supplied with additional barium and sulfate ions derived from heterotrophic remineralization of organic matter. If active during the Archean, pelagic precipitation and subsequent sedimentation may account for the genesis of enigmatic barite deposits. Indeed, barium-isotopic analyses of barites from the Paleoarchean Dresser Formation are consistent with a pelagic mechanism of precipitation, which altogether offers a new paradigm for interpreting the temporal occurrence of barites in the geological record.

11.
Sci Adv ; 3(8): e1701020, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808684

RESUMO

The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments-the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation.

12.
Sci Adv ; 3(4): e1602402, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435882

RESUMO

In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of geochemical data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with models that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated.

13.
Philos Trans A Math Phys Eng Sci ; 375(2094)2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28416730

RESUMO

Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

14.
Proc Natl Acad Sci U S A ; 112(5): 1292-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605900

RESUMO

Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.

15.
Science ; 346(6209): 623-6, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359971

RESUMO

Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event.

16.
Nature ; 439(7074): 314-7, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16421568

RESUMO

Ocean island basalts are generally thought to be the surface expression of mantle plumes, but the nature of the components in the source regions of such mantle plumes is a subject of long-standing debate. The lavas erupted at Hawaii have attracted particular attention, as it has been proposed that coupled 186Os and 187Os anomalies reflect interaction with the Earth's metallic core. It has recently been suggested, however, that such variations could also result from addition of oceanic ferromanganese sediments to the mantle source of these lavas. Here we show that Hawaiian picrites with osmium isotope anomalies also exhibit pronounced thallium isotope variations, which are coupled with caesium/thallium ratios that extend to values much lower than commonly observed for mantle-derived rocks. This correlation cannot be created by admixing of core material, and is best explained by the addition of ferromanganese sediments into the Hawaii mantle source region. However, the lack of correlation between thallium and osmium isotopes and the high thallium/osmium ratios of ferromanganese sediments preclude a sedimentary origin for the osmium isotope anomalies, and leaves core-mantle interaction as a viable explanation for the osmium isotope variations of the Hawaiian picrites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...