Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-10, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036801

RESUMO

Connexin 43 (CX43) is a component of gap junctions. The lack of functional CX43 induces oxidative stress, autophagy, and apoptosis in somatic cells. However, the role of CX43 in the early development of porcine embryos is still unknown. Thus, the aim of this study was to investigate the role of CX43, and its underlying molecular mechanisms, on the developmental competence of early porcine embryos. We performed CX43 knockdown by microinjecting dsRNA into parthenogenetically activated porcine parthenotes. The blastocyst development rate and the total number of cells in the blastocysts were significantly reduced by CX43 knockdown. Results from FITC-dextran assays showed that CX43 knockdown significantly increased membrane permeability. ZO-1 protein was obliterated in CX43 knockdown blastocysts. Mitochondrial membrane potential and ATP production were significantly reduced following CX43 knockdown. Reactive oxygen species (ROS) levels were significantly increased in the CX43 knockdown group compared to those in control embryos. Moreover, CX43 knockdown induced autophagy and apoptosis. Our findings indicate that CX43 is essential for the development and preimplantation of porcine embryos and maintains mitochondrial function, cell junction structure, and cell homeostasis by regulating membrane permeability, ROS generation, autophagy, and apoptosis in early embryos.

2.
Aging (Albany NY) ; 12(2): 1256-1271, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958774

RESUMO

Ubiquinol-10, the reduced form of coenzyme Q10, protects mammalian cells from oxidative damage and enhances mitochondrial activity. However, the protective effect of ubiquinol-10 on mammalian oocytes is not well understood. In this study, we investigated the effect of ubiquinol-10 on porcine oocytes during postovulatory aging. Metaphase II oocytes were selected as fresh oocytes and further cultured for 48 h with different concentrations of ubiquinol-10 (0-400 µM) in vitro as a postovulatory aging model. After choosing the optimal concentration of ubiquinol-10 (100 µM) that maintained oocyte morphology and developmental competence during the progression of aging, the oocytes were randomly divided into five groups: fresh, control-24 h, ubiquinol-24 h, control-48 h, and ubiquinol-48 h. The results revealed that ubiquinol-10 significantly prevented aging-induced oxidative stress, GSH reduction, cytoskeleton impairment, apoptosis, and autophagy. Mitochondrial biogenesis (SIRT1 and PGC-1α) and mitophagy (PINK1 and PARKIN)-related proteins were decreased during aging. Addition of ubiquinol-10 prevented the aging-induced reduction of these proteins. Consequently, although mitochondrial content was decreased, the number of active mitochondria and ATP level were significantly increased upon treatment with ubiquinol-10. Thus, ubiquinol-10 has beneficial effects on porcine postovulatory aging oocytes owing to its antioxidant properties and ability to promote mitochondrial renewal.

3.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118648, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31935425

RESUMO

Porcine zygotic genome activation (ZGA) occurs along with global epigenetic remodeling at the 4-cell stage. These processes are regulated by histone acetylation, which requires acetyl-coenzyme A (CoA). Pyruvate dehydrogenase complex (PDC) is a crucial enzyme in glucose metabolism that converts pyruvate into acetyl-CoA. In mammalian cells, acetyl-CoA is produced by pyruvate dehydrogenase alpha 1 (PDHA1) translocated into the nucleus in special conditions. To determine whether zygotic PDHA1 plays a critical role in promoting histone acetylation during ZGA, a CRISPR/Cas9 genome editing system using multiple guide RNAs was employed to generate a PDHA1-targeted parthenogenetic embryo model. Results of immunofluorescent staining showed that the nuclear accumulation of PDHA1 during ZGA was significantly inhibited by PDHA1 targeting. Meanwhile, the 4-cell arrest rate significantly increased at 72 h after activation, indicating impeded embryonic development. In addition, nuclear histone acetylation significantly decreased when PDHA1 was targeted, and quantitative PCR showed that expression of several zygotic genes was significantly decreased in the PDHA1-targeting group compared to the control group. Overexpression of PDHA1 recovered the nuclear PDHA1, H3K9Ac and H3K27Ac and EIF1A expression levels. Moreover, the 5-to-8-cell-stage embryo development rate was only partially rescued. In conclusion, expression of zygotic origin PDHA1 contributes to porcine ZGA by maintaining histone acetylation in porcine embryos.

4.
J Pineal Res ; : e12627, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31773776

RESUMO

Melatonin, a major hormone of the pineal gland, exerts many beneficial effects on mitochondria. Several studies have shown that melatonin can protect against toxin-induced oocyte quality impairment during maturation. However, there is little information regarding the beneficial effects of melatonin on toxin-exposed early embryos, and the mechanisms underlying such effects have not been determined. Rotenone, a chemical widely used in agriculture, induces mitochondrial toxicity, therefore, damaging the reproductive system, impairing oocyte maturation, ovulation, and fertilization. We investigated whether melatonin attenuated rotenone exposure-induced impairment of embryo development by its mitochondrial protection effect. Activated oocytes were randomly assigned to four groups: the control, melatonin treatment, rotenone-exposed, and "rotenone + melatonin" groups. Treatment with melatonin abrogated rotenone-induced impairment of embryo development, mitochondrial dysfunction, and ATP deficiency, and significantly decreased oxidative stress and apoptosis. Melatonin also increased SIRT1 and PGC-1α expression, which promoted mitochondrial biogenesis. SIRT1 knockdown or pharmacological inhibition abolished melatonin's ability to revert rotenone-induced impairment. Thus, melatonin rescued rotenone-induced impairment of embryo development by reducing ROS production and promoting mitochondrial biogenesis. This study shows that melatonin rescues toxin-induced impairment of early porcine embryo development by promoting mitochondrial biogenesis.

5.
Toxicol In Vitro ; 61: 104635, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31479719

RESUMO

Thiamethoxam (TMX) is a neonicotinoid insecticide, the residues of which have been detected on various crops. In addition to its specific acetylcholine toxicity to insects, TMX was also found to be toxic to mammals. Moreover, oocytes are vulnerable to reactive oxygen species (ROS). Excessive ROS production can override antioxidant defenses and produce oxidative stress and DNA damage that trigger apoptosis and necrosis in organisms. In this study, we exposed bovine oocytes to TMX during maturation. Microscopic examination showed that 1.6 mM TMX significantly inhibited maturation at the germinal vesicle (GV) and metaphase I (MI) stages. Immunofluorescence staining and enzyme activity analysis revealed that TMX induced a reduction in CDC25 and CDC2 activity. Furthermore, time-lapse tracking and immunofluorescence staining indicated the maintenance of cyclin B in the cytoplasm, persistence of Bub3 at kinetochores, and absence of actin caps after TMX-exposed oocytes reached the MI stage. In addition, metaphase II (MII) oocytes exposed to TMX showed disordered chromosomes and spindles. These oocytes accumulated excess ROS and showed significantly decreased mitochondrial membrane potential and increased apoptotic signals. Parthenogenetic embryos from these oocytes showed decreased percentages of morulae and blastocysts. These results indicate that TMX delays bovine oocyte progression to MI stage, blocks them at the MI stage, triggers disordered chromosomes and spindles at MII stage, and ultimately results in MII oocytes with poor cleavage ability and inhibited development to morulae and blastocysts.

6.
Apoptosis ; 24(9-10): 718-729, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240517

RESUMO

Fipronil (FPN) is a widely used phenylpyrazole pesticide that can kill pests by blocking γ-aminobutyric acid (GABA)-gated chloride channels. In addition, there are lack of studies on the effects of FPN on the female mammalian gametes. In this study, porcine oocytes were used to investigate the effects of FPN on the oocyte maturation process. The results showed that the first polar body extrusion rate significantly decreased (100 µM FPN vs. control, 18.64 ± 2.95% vs. 74.90 ± 1.50%, respectively), and oocytes were arrested at the germinal vesicle stage in 100 µM FPN group. Meanwhile, the FPN caused a significant increase in reactive oxygen species (ROS) levels and severe DNA damage inside the oocytes. Furthermore, apoptosis was enhanced along with decreases in mitochondrial membrane potential, BCL-xL, and the release of cytochrome C in FPN-treated group. Additionally, low CDK1 activity and delayed cyclin B1 degradation during germinal vesicle breakdown were found in the FPN-treated group, which resulted from the activation of ATM-P53-P21 pathway. In conclusion, FPN induces apoptosis and cell cycle arrest in porcine oocyte maturation because of increased ROS levels and DNA damage. This suggests that the FPN in the environment may have potential detrimental effects on the female mammalian reproductive system.

7.
FASEB J ; 33(7): 7882-7895, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30897005

RESUMO

Phosphatase and tensin homolog-induced kinase 1 (PINK1) on the outer membranes of impaired mitochondria promotes mitophagy and regulates mitochondrial morphology. Mammalian oocytes and early embryos are mitochondria rich, but mitochondrial dynamics during preimplantation embryo development is not well-studied. To investigate whether PINK1 is required for mitochondrial dynamics in porcine preimplantation embryos, gene knockdown and inhibitors were used, and mitochondrial dynamics were observed by transmission electron microscopy. PINK1 knockdown significantly impaired blastocyst formation and quality, induced mitochondrial elongation and swelling, and reduced mitochondrial DNA copy number. PINK1 knockdown-induced mitochondrial elongation caused mitochondrial dysfunction, oxidative stress, and ATP deficiency, significantly increasing autophagy and apoptosis. Profission dynamin-related protein 1 overexpression prevented PINK1 knockdown-induced impairment of embryo development, mitochondrial elongation, and dysfunction. Thus, PINK1 promotes mitochondrial fission in porcine preimplantation embryos.-Niu, Y.-J., Nie, Z.-W., Shin, K.-T., Zhou, W., Cui, X.-S. PINK1 regulates mitochondrial morphology via promoting mitochondrial fission in porcine preimplantation embryos.

8.
J Cell Physiol ; 234(6): 8963-8974, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30317618

RESUMO

Spindlin 1 (SPIN1), which contains Tudor-like domains, regulates maternal transcripts via interaction with a messenger RNA (mRNA)-binding protein. SPIN1 is involved in tumorigenesis in somatic cells and is highly expressed in cancer cells. Nevertheless, the role of SPIN1 in porcine oocyte maturation remains totally unknown. To explore the function of SPIN1 in porcine oocyte maturation, knockdown, and overexpression techniques were used. SPIN1 mRNA was identified in maternal stages ranging from GV to MII. SPIN1 was localized in the cytoplasm and to chromosomes during meiosis. SPIN1 knockdown accelerated first polar body extrusion. Oocytes with overexpressed SPIN1 were arrested at the MI stage. SPIN1 depletion caused meiotic spindle defects and chromosome instability. The BUB3 signal was investigated, confirming that SPIN1 affects the stability of Bub3 mRNA as well as BUB3 expression. Further, overexpression of SPIN1 inhibited the degradation and regulation of G2/mitotic-specific cyclin-B1. In summation, SPIN1 regulates the meiotic cell cycle by modulating the activation of the spindle assembly checkpoint.

9.
Biol Reprod ; 100(4): 907-916, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395161

RESUMO

Homocysteine (Hcy) is an intermediate in the one-carbon metabolism that donates methyl groups for methylation processes involved in epigenetic gene regulation. Although poor oocyte quality in polycystic ovarian syndrome (PCOS) patients is associated with elevated Hcy concentration in serum and follicular fluid, whether Hcy directly affects oocyte quality and its mechanisms are poorly understood. Here we show that Hcy treatment impaired oocyte quality and developmental competence, indicated by significantly reduced survival rate, polar body extrusion rate, and cleavage rate. Hcy treatment resulted in mitochondrial dysfunction, with increased production of mitochondrial ROS, reduced mtDNA copy number, and the expression of 7 out of 13 mtDNA-encoded genes and 2 ribosome RNA genes, 12S rRNA and 16S rRNA. Upon Hcy treatment, the expression of one-carbon metabolic enzymes and DNMT1 was enhanced. Interestingly, DNA methyltransferase inhibitor 5'AZA rescued Hcy-induced mitochondrial dysfunction, impaired oocyte quality and developmental competence. Concurrently, expression of one-carbon metabolic enzymes and methylation status of mtDNA coding sequences were also normalized, at least partially, by 5'AZA treatment. Our findings not only extend the understanding about how Hcy induces poor oocyte quality, but also contribute to a novel angle of identifying targets for enhancing the quality of oocyte from PCOS patients.

10.
Cell Signal ; 53: 294-303, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145217

RESUMO

Thiamethoxam (TMX) is a neonicotinoid insecticide. It has specific high toxicity to insects. Residues of TMX have been detected in various crops. Early embryo quality is vital for fertility. Excessive production of reactive oxygen species (ROS) can override embryonic antioxidant defenses, producing oxidative stress that triggers apoptosis, necrosis, and/or permanent DNA damage responses in the early embryo. Comparative studies have indicated that TMX hepatotoxicity is significant in mammals in acute tests, but little is known about accumulated chronic toxicity in early embryonic development. Porcine embryos were obtained here by the parthenogenetic activation of meiosis II oocytes and cultured in the PZM-5 medium with or without TMX. These embryos were evaluated by various methods. The expansion and hatching of blastocysts treated with TMX decreased by 21.73% and 16.71%, respectively, as compared with controls. In an analysis of 5-bromo-2-deoxyuridine (BrdU) incorporation, the rate of cell proliferation was 44.33% lower as compared with expanded blastocysts of the control group. ROS and γH2AX levels were higher in the TMX group than in the control group. Real-time reverse-transcription polymerase chain reaction showed that Sod1 expression increased and the expression of Mnsod, Gpx1, Igta5, and Cox2 decreased. A CDK1 kinase assay revealed that maturation-promoting factor (MPF) activity diminished by 31.41% in expanding blastocysts. In conclusion, these results suggest that TMX inhibits blastocyst expansion and hatching by ROS-induced DNA damage checkpoint activation, which inhibits the activation of MPF and cell cycle progression in porcine blastocysts.

11.
Theriogenology ; 118: 157-163, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29909260

RESUMO

Aflatoxin B1 (AFB1) is a type of mycotoxin produced by the fungi Aspergillus flavus and Aspergillus parasiticus. AFB1 is considered as the most toxic mycotoxin owing to its toxic effect on health. In the present study, the toxic effect of AFB1 on early porcine embryonic development and its possible mechanism were investigated. Blastocyst formation was impaired with treatment of 1 nM AFB1 compared with control, 0.01, 0.1 group (40.13 ±â€¯2.10%, 28.21 ±â€¯1.62%, 32.34 ±â€¯2.07% vs 19.01 ±â€¯1.06%). Further study showed that the presence of AFB1 induced the generation of reactive oxygen species (ROS). And excessive ROS caused DNA damage which confirmed by the comet assay. Additionally, AFB1 also disrupted the DNA damage repair through the regulation of 53BP1. The AFB1 treatment significantly increased the γH2A foci and decreased the 53BP1 foci. TUNEL assay confirmed the generation of apoptosis, further resulting in the occurrence of autophagy. Moreover, AFB1 significantly increased the expression of pro-apoptosis genes Bax and Casp3 and reduced the expression of anti-apoptotic genes Bcl2 and Bcl-xl. In addition, the AFB1 also significantly increased the expression of autophagy related genes Lc3 and Beclin1. The presence of AFB1 significantly impaired the cell proliferation, a parameter of blastocyst quality for outgrowth. These results showed that the presence of AFB1 impaired porcine early embryonic development through oxidative stress, as well as DNA damage and repair, apoptosis, autophagy.


Assuntos
Aflatoxina B1/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Sus scrofa , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas/veterinária , Estresse Oxidativo/efeitos dos fármacos , Partenogênese , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
12.
Microsc Microanal ; 24(1): 29-37, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485024

RESUMO

MicroRNA (miR)-29b plays a crucial role during somatic cell reprogramming. The aim of the current study was to explore the effects of miR-29b on the developmental competence of bovine somatic cell nuclear transfer (SCNT) embryos, as well as the underlying mechanisms of action. The expression level of miR-29b was lower in bovine SCNT embryos at the pronuclear, 8-cell, and blastocyst stages compared with in vitro fertilized embryos. In addition, miR-29b regulates the expression of DNA methyltransferases (Dnmt3a/3b and Dnmt1) in bovine SCNT embryos. We further investigated SCNT embryo developmental competence and found that miR-29b overexpression during bovine SCNT embryonic development does not improve developmental potency and downregulation inhibits developmental potency. Nevertheless, the quality of bovine SCNT embryos at the blastocyst stage improved significantly. The expression of pluripotency factors and cellular proliferation were significantly higher in blastocysts from the miR-29b overexpression group than the control and downregulation groups. In addition, outgrowth potential in blastocysts after miR-29b overexpression was also significantly greater in the miR-29b overexpression group than in the control and downregulation groups. Taken together, these results demonstrated that miR-29b plays an important role in bovine SCNT embryo development.


Assuntos
Blastocisto/metabolismo , Núcleo Celular/metabolismo , MicroRNAs/metabolismo , Animais , Bovinos , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Imunofluorescência , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Cell Physiol ; 233(5): 4225-4234, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29058795

RESUMO

Fatty acid synthase (FAS) is an important enzyme involved in the de novo synthesis of long-chain fatty acids. During development, the function of FAS in growth is greater than that in energy storage pathways; therefore, we hypothesized that knockout of FAS would affect early embryonic development owing to the induction of endoplasmic reticulum (ER) stress. In the present study, the function of FAS was studied using the CRISPR (clustered regularly interspaced short palindromic repeats)/ CRISPR-associated protein 9 (Cas9) system. Cas9 and single-guide RNA (sgRNA) were injected into parthenotes to decrease the number of FAS-positive embryos. The efficiency of knockout was assayed by DNA sequencing. We found that FAS knockout caused excessive production of reactive oxygen species (ROS). Excess ROS induced ER stress, resulting in activation of the adaptive unfolded protein response (UPR). FAS knockout caused splicing of the X-box binding protein 1 gene (XBP1) and expression of spliced XBP1 mRNA. In addition, FAS knockout caused phosphorylation of PKR-like ER kinase (PERK), and an increase in the mRNA expression of the ER stress-regulated genes, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). Finally, Ca2+ was released from the ER and taken up by the mitochondria. As the ER stress became intolerable, apoptosis was initiated. These results demonstrate that FAS knockout induced ROS generation, which mediated the activation of UPR via the ER stress, ultimately leading to apoptosis induction.


Assuntos
Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Ácido Graxo Sintases/genética , Proteína 1 de Ligação a X-Box/genética , Fator 4 Ativador da Transcrição/genética , Animais , Desenvolvimento Embrionário/genética , Retículo Endoplasmático/genética , Feminino , Técnicas de Inativação de Genes , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Suínos , Fator de Transcrição CHOP/genética , Resposta a Proteínas não Dobradas/genética
14.
Theriogenology ; 108: 146-152, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216538

RESUMO

The acetyltransferase TIP60 (also known as Kat5) is a member of the MYST family of histone acetyltransferases and was initially identified as a cellular protein. TIP60 acetylates histone and non-histone proteins and is involved in diverse biological processes, including apoptosis, cell cycle, and DNA damage responses. In this study, a specific inhibitor of TIP60 was used to detect the function of TIP60 in porcine parthenogenetic embryos. The results showed that TIP60 inhibition impaired porcine parthenogenetic embryonic development. The mechanism of TIP60 was also determined. We found that the TIP60 inhibition impaired embryonic development by ROS induced DNA damage, as demonstrated by the number of γH2A in the nuclei. TIP60 inhibition triggered DNA damage through the regulation of p53-p21 pathway and TIP60 played a role in DNA repair. TIP60 inhibition decreased the efficiency of DNA repair by regulating 53BP1-dependent repair after DNA damage. Inhibition of TIP60 also increased the adaptive response, autophagy, by modulating LC3. Therefore, TIP60 plays a role in early porcine parthenogenetic embryonic development by regulating DNA damage and repair.


Assuntos
Dano ao DNA , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lisina Acetiltransferase 5/metabolismo , Suínos/embriologia , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Técnicas de Cultura Embrionária/veterinária , Fertilização In Vitro/veterinária , Lisina Acetiltransferase 5/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Sci Rep ; 7(1): 16992, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208995

RESUMO

C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of early porcine embryos as well as its underlying mechanisms. Different concentrations of CP (2, 5, 8, 10 µg/mL) were added to porcine zygote medium 5 during in vitro culture. The results showed that 5 µg/mL CP significantly increased blastocyst formation and hatching rate. Blastocyst formation and quality were significantly increased in the 50 µM H2O2 treatment group following 5 µg/mL CP addition. CP prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and reactive oxygen species generation. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared to in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Ficocianina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Autofagia , Técnicas de Cultura Embrionária , Feminino , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxidantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Suínos
16.
Sci Rep ; 7(1): 17082, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213094

RESUMO

Excessive long-term fluoride intake is associated with several health problems, including infertility. However, limited information is available on the toxic effects of fluoride exposure on the female reproductive system, especially oocyte maturation. In this study, we investigated the toxic effect of sodium fluoride (NaF) exposure on porcine oocyte maturation and its possible underlying mechanisms. Our results showed that NaF exposure during porcine oocyte maturation inhibited cumulus cell expansion and impaired polar body extrusion. Cell cycle analysis showed that NaF exposure blocked meiotic resumption, disturbed spindle dynamics, disrupted chromosome separation, and increased aneuploidy in porcine oocytes. Moreover, NaF exposure disturbed mitochondrial function, triggered DNA damage response, and induced early apoptosis in porcine oocytes. NaF exposure also induced oxidative stress, decreased GSH level, and increased cathepsin B activity in and impaired the further development potential of porcine oocytes, as indicated by a decrease in blastocyst formation rate, increase in apoptosis, and inhibition of cell proliferation. Together, these results indicate that NaF exposure impairs the maturation capacity of porcine oocytes by inhibiting cumulus cell expansion, disturbing cytoskeletal dynamics, and blocking nuclear and cytoplasmic maturation, thus decreasing the quality and affecting the subsequent embryonic development potential of porcine oocytes.


Assuntos
Oogênese/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Aneuploidia , Animais , Apoptose/efeitos dos fármacos , Catepsina B/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Histonas/metabolismo , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Suínos
17.
Sci Rep ; 7(1): 8632, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819136

RESUMO

Bisphenol A (BPA) is an environmental contaminant widely used in the plastic industry. BPA has been demonstrated to be an endocrine disruptor and has an adverse effect on the embryonic development of mammals. However, the mechanism of action of BPA is limited. In this study, we investigated the role and mechanism of BPA in porcine embryonic development. First, the parthenotes were treated with different concentrations of BPA. We found that blastocyst formation was impaired and the parthenotes were arrested at the 4-cell stage after treatment with 100 µm BPA. Second, ROS increased following the addition of BPA, which further caused mitochondrial damage, and cytochrome c was released from the mitochondria to induce apoptosis. The adaptive response was demonstrated through LC3 immunofluorescence staining and by assessing autophagy-related gene expression. In addition, BPA caused DNA damage through the p53-p21 signaling pathway. Thus, our results indicate that BPA displays an adverse effect on porcine early embryonic development through mitochondrial and DNA damage.


Assuntos
Compostos Benzidrílicos/farmacologia , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fenóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Blastocisto/citologia , Blastocisto/metabolismo , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/genética , Estrogênios não Esteroides/farmacologia , Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Suínos
18.
Stem Cell Reports ; 9(2): 642-653, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28689997

RESUMO

The nucleosome, the fundamental structural unit of chromatin, is a critical regulator of gene expression. The mechanisms governing changes to nucleosome occupancy and positioning during somatic cell reprogramming remain poorly understood. We established a method for generating genome-wide nucleosome maps of porcine embryonic fibroblasts (PEF), reconstructed 1-cell embryos generated by somatic cell nuclear transfer (SCNT), and fertilized zygotes (FZ) using MNase sequencing with only 1,000 cells. We found that donor PEF chromatin, especially X chromosome, became more open after transfer into porcine oocytes and nucleosome occupancy decreased in promoters but increased in the genic regions. Nucleosome arrangements around transcriptional start sites of genes with different expression levels in somatic cells tended to become transcriptionally silent in SCNT; however, some pluripotency genes adopted transcriptionally active nucleosome arrangements. FZ and SCNT had similar characteristics, unlike PEF. This study reveals the dynamics and importance of nucleosome positioning and chromatin organization early after reprogramming.


Assuntos
Reprogramação Celular , Técnicas de Transferência Nuclear , Nucleossomos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Feminino , Fertilização In Vitro , Expressão Gênica , Masculino , Ligação Proteica , Análise de Sequência de DNA , Suínos , Sítio de Iniciação de Transcrição , Ativação Transcricional
19.
Dalton Trans ; 46(21): 6912-6920, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28504792

RESUMO

The synthesis of four low symmetry A2B type Cu(iii)triarylcorroles with meso-aryl substituents that provide electron donating (push) and withdrawing (pull) properties is reported, along with their structural characterization by NMR spectroscopy and X-ray crystallography. An analysis of the structure-property relationships in the optical and redox properties has been carried out by comparing their optical spectroscopy, electrochemistry, and spectroelectrochemistry to trends predicted in DFT and TD-DFT calculations. The results demonstrate that A2B type Cu(iii)triarylcorroles are highly efficient catalysts for electrocatalyzed hydrogen evolution reactions (HERs) and that their reactivity can be modulated by changing the nature of the B-position meso-substituent.

20.
Sci Rep ; 6: 19436, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758245

RESUMO

Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts.


Assuntos
Carbono/metabolismo , Metilação de DNA , DNA Mitocondrial , Redes e Vias Metabólicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Peixes , Dosagem de Genes , Regulação da Expressão Gênica , Genes Mitocondriais , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Oócitos/metabolismo , Síndrome do Ovário Policístico/patologia , Transporte Proteico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA