Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Hum Genet ; 108(2): 337-345, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434492

RESUMO

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/crescimento & desenvolvimento , Mutação , Ductos Mesonéfricos/crescimento & desenvolvimento , Adulto , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Códon sem Sentido , Feminino , Estudos de Associação Genética , Pleiotropia Genética , Proteínas Homeobox A10/genética , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição PAX8/genética , Herança Paterna , Penetrância , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , Ductos Mesonéfricos/anormalidades
2.
Microb Pathog ; 149: 104551, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011362

RESUMO

Carp edema virus disease (CEVD) has resulted in great economic losses in koi (Cyprinus carpio koi) and common carp (Cyprinus carpio carpio) populations in the world. In this study, the diseased koi were diagnosed as CEV infection based on 5' untranslated region (5'UTR) and 4a protein genes by the conventional PCR, nested PCR and quantitative PCR (qPCR) analyses. Phylogenetic tree analysis showed that the TJ201708 strain was classified into the genogroup IIa. Furthermore, qPCR of 5'UTR gene revealed that the lowest detection limit was 4.0 fg/µL. The pathogenicity of CEV for koi was demonstrated in the infection experiments. Histopathological examination revealed the petechial hemorrhages of liver and spleen, vacuolization of lamina propria of intestine and swelling and necrosis of respiratory epithelial cells of gills. To our knowledge, this is the first report the qPCR of 5'UTR gene in the detection of carp edema virus.

3.
Orphanet J Rare Dis ; 15(1): 250, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933559

RESUMO

BACKGROUND: We previously reported a novel clinically distinguishable subtype of congenital scoliosis (CS), namely, TBX6-associated congenital scoliosis (TACS). We further developed the TBX6-associated CS risk score (TACScore), a multivariate phenotype-based model to predict TACS according to the patient's clinical manifestations. In this study, we aimed to evaluate whether using the TACScore as a screening method prior to performing whole-exome sequencing (WES) is more cost-effective than using WES as the first-line genetic test for CS. METHODS: We retrospectively collected the molecular data of 416 CS patients in the Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study. A decision tree was constructed to estimate the cost and the diagnostic time required for the two alternative strategies (TACScore versus WES). Bootstrapping simulations and sensitivity analyses were performed to examine the distributions and robustness of the estimates. The economic evaluation considered both the health care payer and the personal budget perspectives. RESULTS: From the health care payer perspective, the strategy of using the TACScore as the primary screening method resulted in an average cost of $1074.2 (95%CI: $1044.8 to $1103.5) and an average diagnostic duration of 38.7d (95%CI: 37.8d to 39.6d) to obtain a molecular diagnosis for each patient. In contrast, the corresponding values were $1169.6 (95%CI: $1166.9 to $1172.2) and 41.4d (95%CI: 41.1d to 41.7d) taking WES as the first-line test (P < 0.001). From the personal budget perspective, patients who were predicted to be positive by the TACScore received a result with an average cost of $715.1 (95%CI: $594.5 to $835.7) and an average diagnostic duration of 30.4d (95%CI: 26.3d to 34.6d). Comparatively, the strategy of WES as the first-line test was estimated to have significantly longer diagnostic time with an average of 44.0d (95%CI: 43.2d to 44.9d), and more expensive with an average of $1193.4 (95%CI: $1185.5 to $1201.3) (P < 0.001). In 100% of the bootstrapping simulations, the TACScore strategy was significantly less costly and more time-saving than WES. The sensitivity analyses revealed that the TACScore strategy remained cost-effective even when the cost per WES decreased to $8.8. CONCLUSIONS: This retrospective study provides clinicians with economic evidence to integrate the TACScore into clinical practice. The TACScore can be considered a cost-effective tool when it serves as a screening test prior to performing WES.

4.
Fish Shellfish Immunol ; 106: 1052-1066, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32950679

RESUMO

Vibrio vulnificus is a major pathogen of cultured Cynoglossus semilaevis and results in skin ulceration and haemorrhage, but the proteomic mechanism of skin immunity against V. vulnificus remains unclear. In this study, we investigated the histopathology and skin immune response in C. semilaevis with V. vulnificus infection at the protein levels, the differential proteomic profiling of its skin was examined by using iTRAQ and LC-MS/MS analyses. A total of 951 proteins were identified in skin, in which 134 and 102 DEPs were screened at 12 and 36 hpi, respectively. Selected eleven immune-related DEPs (pvß, Hsp71, MLC1, F2, α2ML, HCII, C3, C5, C8ß, C9 and CD59) were verified for their immune roles in the V. vulnificus infection via using qRT-PCR assay. KEGG enrichment analysis revealed that most of the identified immune proteins were significantly associated with complement and coagulation cascades, antigen processing and presentation, salivary secretion and phagosome pathways. To our knowledge, this study is the first to describe the proteome response of C. semilaevis skin against V. vulnificus infection. The outcome of this study contributed to provide a new perspective for understanding the molecular mechanism of local skin mucosal immunity, and facilitating the development of novel mucosal vaccination strategies in fish.

5.
J Fish Biol ; 97(5): 1542-1553, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32885862

RESUMO

Crucian carp (Carassius auratus) is one of the major freshwater species and important food fish in China. Fish skin acts as the first line of defence against pathogens, yet its molecular and immune mechanism remains unclear. In this study, a de novo transcriptome assembly of C. auratus skin was performed with the Illumina Hiseq 2000 platform. A total of 49,154,776 clean reads were assembled, among which 60,824 (46.86%), 37,103 (28.59%), 43,269 (33.33%) unigenes were annotated against National Center for Biotechnology Information, Gene Onotology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. KEGG Orthology categories were significantly involved in immune system (20.50%), signal transduction (18.04%) and mucosal mucin genes (e.g., muc2, muc5AC, muc5B, muc17, muc18). The high expression of muc18 gene was observed in brain; that of muc2 in intestine; and that of muc5AC in skin, liver, spleen, intestine and muscle. Moreover, the potential 28,928 simple sequence repeats with the three most abundant dinucleotide repeat motifs (AC/GT, AG/CT, AT/AT) were detected in C. auratus. To authors' knowledge, this is the first report to describe the transcriptome analysis of C. auratus skin, and the outcome of this study contributed to the understanding of mucosal immune response of the skin and molecular markers in cyprinid species.

6.
Mol Genet Genomic Med ; 8(10): e1453, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32815649

RESUMO

BACKGROUND: Congenital scoliosis (CS) is a spinal deformity due to vertebral malformations. Although insufficiency of TBX6 dosage contributes to a substantial proportion of CS, the molecular etiology for the majority of CS remains largely unknown. TBX6-mediated genes involved in the process of somitogenesis represent promising candidates. METHODS: Individuals affected with CS and without a positive genetic finding were referred to this study. Proband-only exome sequencing (ES) were performed on the recruited individuals, followed by analysis of TBX6-mediated candidate genes, namely MEOX1, MEOX2, MESP2, MYOD1, MYF5, RIPPLY1, and RIPPLY2. RESULTS: A total of 584 patients with CS of unknown molecular etiology were recruited. After ES analysis, protein-truncating variants in RIPPLY1 and MYF5 were identified from two individuals, respectively. In addition, we identified five deleterious missense variants (MYOD1, n = 4; RIPPLY2, n = 1) in TBX6-mediated genes. We observed a significant mutational burden of MYOD1 in CS (p = 0.032) compared with the in-house controls (n = 1854). Moreover, a potential oligogenic disease-causing mode was proposed based on the observed mutational co-existence of MYOD1/MEOX1 and MYOD1/RIPPLY1. CONCLUSION: Our study characterized the mutational spectrum of TBX6-mediated genes, prioritized core candidate genes/variants, and provided insight into a potential oligogenic disease-causing mode in CS.

7.
J Med Genet ; 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381727

RESUMO

BACKGROUND: Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS: In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS: After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION: ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.

8.
BMC Med Genet ; 21(1): 115, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460719

RESUMO

BACKGROUND: Multiple epiphyseal dysplasia (MED) is a skeletal disorder characterized by delayed and irregular ossification of the epiphyses and early-onset osteoarthritis. At least 66% of the reported autosomal dominant MED (AD-MED) cases are caused by COMP mutations. METHODS: We recruited a four-generation Chinese family with early-onset hip osteoarthritis, flatfoot, brachydactyly, and mild short stature. An assessment of the family history, detailed physical examinations, and radiographic evaluations were performed on the proband and other family members, followed by the performance of whole-exome sequencing (WES). The pathogenicity of the candidate mutation was also analyzed. RESULTS: An AD-MED family with 10 affected members and 17 unaffected members was recruited. The main radiographic findings were symmetrical changes in the dysplastic acetabulum and femoral heads, irregular contours of the epiphyses, a shortened femoral neck, and flatfoot. Lower bone density was also observed in the ankle joints, wrist joints, and knees, as well as irregular vertebral end plates. In the proband, we identified the missense mutation c.1153G > T (p. Asp385Tyr), located in exon 11 of the COMP gene. This mutation was assessed as 'pathogenic' because of its low allele frequency and its high likelihood of co-segregation with disease in the reported family. Sanger sequencing validated the novel heterozygous mutation c.1153G > T (p. Asp385Tyr) in exon 11 of COMP in all affected individuals in the family. CONCLUSIONS: Our results underlined a key role of the Asp385 amino acid in the protein function of COMP and confirmed the pathogenicity of the COMP (c.1153G > T; p. Asp385Tyr) mutation in AD-MED disease. We have therefore expanded the known mutational spectrum of COMP and revealed new phenotypic information for AD-MED.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/genética , Família , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Adolescente , Adulto , Idoso , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Proteína de Matriz Oligomérica de Cartilagem/química , Criança , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade , Sequenciamento Completo do Exoma , Adulto Jovem
9.
J Cell Mol Med ; 24(9): 4931-4943, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32277576

RESUMO

Tumour-induced osteomalacia (TIO) is a very rare paraneoplastic syndrome with bone pain, fractures and muscle weakness, which is mostly caused by phosphaturic mesenchymal tumours (PMTs). Cell-free DNA (cfDNA) has been regarded as a non-invasive liquid biopsy for many malignant tumours. However, it has not been studied in benign tumours, which prompted us to adopt the targeted next-generation sequencing approach to compare cfDNAs of 4 TIO patients, four patients with bone metastasis (BM) and 10 healthy controls. The mutational landscapes of cfDNA in TIO and BM groups were similar in the spectrum of allele frequencies and mutation types. Markedly, deleterious missense mutations in FGFR1 and loss-of-function mutations in MED12 were found in 3/4 TIO patients but none of BM patients. The gene ontology analysis strongly supported that these mutated genes found in TIOs would play a potential role in PMTs' process. The genetic signatures and corresponding change in expression of FGFR1 and FGF23 were further validated in PMT tissues from a test cohort of another three TIO patients. In summary, we reported the first study of the mutational landscape and genetic signatures of cfDNA in TIO/PMTs.

10.
BMC Musculoskelet Disord ; 21(1): 220, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32278351

RESUMO

BACKGROUND: Klippel-Feil syndrome (KFS) represents a rare anomaly characterized by congenital fusion of the cervical vertebrae. The underlying molecular etiology remains largely unknown because of the genetic and phenotypic heterogeneity. METHODS: We consecutively recruited a Chinese cohort of 37 patients with KFS. The clinical manifestations and radiological assessments were analyzed and whole-exome sequencing (WES) was performed. Additionally, rare variants in KFS cases and controls were compared using genetic burden analysis. RESULTS: We primarily examined rare variants in five reported genes (GDF6, MEOX1, GDF3, MYO18B and RIPPLY2) associated with KFS and detected three variants of uncertain significance in MYO18B. Based on rare variant burden analysis of 96 candidate genes related to vertebral segmentation defects, we identified BAZ1B as having the highest probability of association with KFS, followed by FREM2, SUFU, VANGL1 and KMT2D. In addition, seven patients were proposed to show potential oligogenic inheritance involving more than one variants in candidate genes, the frequency of which was significantly higher than that in the in-house controls. CONCLUSIONS: Our study presents an exome-sequenced cohort and identifies five novel genes potentially associated with KFS, extending the spectrum of known mutations contributing to this syndrome. Furthermore, the genetic burden analysis provides further evidence for potential oligogenic inheritance of KFS.

11.
J Neurointerv Surg ; 12(2): 221-226, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31401562

RESUMO

BACKGROUND: Genetic risk factors play an important role in the pathogenesis of familial intracranial aneurysms (FIAs); however, the molecular mechanisms remain largely unknown. OBJECTIVE: To investigate potential FIA-causing genetic variants by rare variant interrogation and a family-based genomics approach in a large family with an extensive multigenerational pedigree with FIAs. METHOD: Exome sequencing (ES) was performed in a dominant likely family with intracranial aneurysms (IAs). Variants were analyzed by an in-house developed pipeline and prioritized using various filtering strategies, including population frequency, variant type, and predicted variant pathogenicity. Sanger sequencing was also performed to evaluate the segregation of the variants with the phenotype. RESULTS: Based on the ES data obtained from five individuals from a family with 7/21 living members affected with IAs, a total of 14 variants were prioritized as candidate variants. Familial segregation analysis revealed that NFX1 c.2519T>C (p.Leu840Pro) segregated in accordance with Mendelian expectations with the phenotype within the family-that is, present in all IA-affected cases and absent from all unaffected members of the second generation. This missense variant is absent from public databases (1000genome, ExAC, gnomAD, ESP5400), and has damaging predictions by bioinformatics tools (Gerp ++ score = 5.88, CADD score = 16.43, MutationTaster score = 1, LRT score = 0). In addition, 840Leu in NFX1 is robustly conserved in mammals and maps in a region before the RING-type zinc finger domain. CONCLUSION: NFX1 c.2519T>C (p.Leu840Pro) may contribute to the pathogenetics of a subset of FIAs.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Exoma/genética , Variação Genética/genética , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/genética , Proteínas Repressoras/genética , Adulto , Grupo com Ancestrais do Continente Asiático/etnologia , Biologia Computacional/métodos , Feminino , Humanos , Aneurisma Intracraniano/etnologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
12.
J Hum Genet ; 65(3): 221-230, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31827250

RESUMO

Congenital scoliosis (CS) is a form of scoliosis caused by congenital vertebral malformations. Genetic predisposition has been demonstrated in CS. We previously reported that TBX6 loss-of-function causes CS in a compound heterozygous model; however, this model can explain only 10% of CS. Many monogenic and polygenic CS genes remain to be elucidated. In this study, we analyzed exome sequencing (ES) data of 615 Chinese CS from the Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) project. Cosegregation studies for 103 familial CS identified a novel heterozygous nonsense variant, c.2649G>A (p.Trp883Ter) in FBN1. The association between FBN1 and CS was then analyzed by extracting FBN1 variants from ES data of 574 sporadic CS and 828 controls; 30 novel variants were identified and prioritized for further analyses. A mutational burden test showed that the deleterious FBN1 variants were significantly enriched in CS subjects (OR = 3.9, P = 0.03 by Fisher's exact test). One missense variant, c.2613A>C (p.Leu871Phe) was recurrent in two unrelated CS subjects, and in vitro functional experiments for the variant suggest that FBN1 may contribute to CS by upregulating the transforming growth factor beta (TGF-ß) signaling. Our study expanded the phenotypic spectrum of FBN1, and provided nove insights into the genetic etiology of CS.


Assuntos
Anormalidades Congênitas/genética , Fibrilina-1/genética , Predisposição Genética para Doença , Escoliose/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/fisiopatologia , Exoma/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação , Mutação de Sentido Incorreto/genética , Linhagem , Escoliose/diagnóstico por imagem , Escoliose/fisiopatologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Fator de Crescimento Transformador beta/genética
13.
Mol Genet Genomic Med ; 8(1): e1023, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774634

RESUMO

BACKGROUND: The molecular and genetic mechanisms by which different single nucleotide variant alleles in specific genes, or at the same genetic locus, cause distinct disease phenotypes often remain unclear. Allelic truncating mutations of FBN1 could cause either classical Marfan syndrome (MFS) or a more complicated phenotype associated with Marfanoid-progeroid-lipodystrophy syndrome (MPLS). METHODS: We investigated a small cohort, encompassing two classical MFS and one MPLS subjects from China, whose clinical presentation included scoliosis potentially requiring surgical intervention. Targeted next generation sequencing was performed on all the participants. We analyzed the molecular diagnosis, clinical features, and the potential molecular mechanism involved in the MPLS subject in our cohort. RESULTS: We report a novel de novo FBN1 mutation for the first Chinese subject with MPLS, a more complicated fibrillinopathy, and two subjects with more classical MFS. We further predict that the MPLS truncating mutation, and others previously reported, is prone to escape the nonsense-mediated decay (NMD), while MFS mutations are predicted to be subjected to NMD. Also, the MPLS mutation occurs within the glucogenic hormone asprosin domain of FBN1. In vitro experiments showed that the single MPLS mutation p.Glu2759Cysfs*9 appears to perturb proper FBN1 protein aggregation as compared with the classical MFS mutation p.Tyr2596Thrfs*86. Both mutations appear to upregulate SMAD2 phosphorylation in vitro. CONCLUSION: We provide direct evidence that a dominant-negative interaction of FBN1 potentially explains the complex MPLS phenotypes through genetic and functional analysis. Our study expands the mutation spectrum of FBN1 and highlights the potential molecular mechanism for MPLS.

14.
Oncol Rep ; 41(5): 2762-2774, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30816514

RESUMO

The aim of the present study was to examine the whole­genome DNA methylation status of thymomas and identify differences in thymoma DNA methylation profiles. DNA methylation profiles of tissues (n=12) were studied using the Infinium MethylationEPIC BeadChip microarray (850K) and analyzed in relation to gene expression data. Functional annotation analysis of DNA methylation between the different groups was performed using the online tool GeneCodis3. In order to assess the diagnostic value of candidate DNA methylation markers, receiver operation characteristic (ROC) analysis was performed using the pROC package. A total of 10,014 CpGs were found to be differentially methylated (Δß>0.2) between two thymoma types (type A and B). Combination analysis showed that 36 genes had differentially methylated CpG sites in their promoter region. 'Pathways in cancer', 'focal adhesion' and 'regulation of actin cytoskeleton' were the most enriched KEGG pathways of differentially methylated genes between tumor and controls. Among the 29 genes that were hypomethylated with a high expression, zinc finger protein 396 and Fraser extracellular matrix complex subunit 1 had the largest area under the curve. The present results may provide useful insights into the tumorigenesis of thymomas and a strong basis for future research on the molecular subtyping of epigenetic regulation in thymomas.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Timoma/genética , Neoplasias do Timo/genética , Adulto , Idoso de 80 Anos ou mais , Carcinogênese/genética , Ilhas de CpG/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Timectomia , Timoma/patologia , Timoma/cirurgia , Timo/patologia , Timo/cirurgia , Neoplasias do Timo/patologia , Neoplasias do Timo/cirurgia
15.
Genet Med ; 21(7): 1548-1558, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30636772

RESUMO

PURPOSE: To characterize clinically measurable endophenotypes, implicating the TBX6 compound inheritance model. METHODS: Patients with congenital scoliosis (CS) from China(N = 345, cohort 1), Japan (N = 142, cohort 2), and the United States (N = 10, cohort 3) were studied. Clinically measurable endophenotypes were compared according to the TBX6 genotypes. A mouse model for Tbx6 compound inheritance (N = 52) was investigated by micro computed tomography (micro-CT). A clinical diagnostic algorithm (TACScore) was developed to assist in clinical recognition of TBX6-associated CS (TACS). RESULTS: In cohort 1, TACS patients (N = 33) were significantly younger at onset than the remaining CS patients (P = 0.02), presented with one or more hemivertebrae/butterfly vertebrae (P = 4.9 × 10‒8), and exhibited vertebral malformations involving the lower part of the spine (T8-S5, P = 4.4 × 10‒3); observations were confirmed in two replication cohorts. Simple rib anomalies were prevalent in TACS patients (P = 3.1 × 10‒7), while intraspinal anomalies were uncommon (P = 7.0 × 10‒7). A clinically usable TACScore was developed with an area under the curve (AUC) of 0.9 (P = 1.6 × 10‒15). A Tbx6-/mh (mild-hypomorphic) mouse model supported that a gene dosage effect underlies the TACS phenotype. CONCLUSION: TACS is a clinically distinguishable entity with consistent clinically measurable endophenotypes. The type and distribution of vertebral column abnormalities in TBX6/Tbx6 compound inheritance implicate subtle perturbations in gene dosage as a cause of spine developmental birth defects responsible for about 10% of CS.


Assuntos
Dosagem de Genes , Padrões de Herança , Escoliose/congênito , Escoliose/genética , Proteínas com Domínio T/genética , Animais , Estudos de Coortes , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Genéticos , Escoliose/classificação , Escoliose/patologia , Coluna Vertebral/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31921798

RESUMO

Background: Adolescent idiopathic scoliosis (AIS) is a complex disease affecting a large number of teenagers, especially in female. This study reveals novel epigenetic perturbation to the pathogenesis of AIS. Methods: A female monozygotic (MZ) twin pair discordant for AIS were examined for whole-exome sequencing and epigenome difference. Sets of differentially methylated regions (DMRs) were validated using MethylTarget™ method in 20 AIS female patients and 20 healthy female controls. Results: Few exome difference but several potential DMRs were found between the MZ twins. We identified 313 hypermethylated DMRs and 397 hypomethylated DMRs, respectively. Most of them were enriched in the MAPK and PI3K-Akt signaling pathway, which may contribute to the discordance of AIS. Several DMRs related to scoliosis genes were tested, and the NDN: TSS-DMR (chr15:23932133-23932304, hg19) was confirmed in additional samples. The methylation level of this DMR was significantly higher in the AIS group than in the control group (p = 0.04). Conclusions: We described the epigenome difference in an AIS female discordant MZ twin pair using Whole Genome Bisulfite Sequencing (WGBS). The NDN: TSS-DMR had higher methylation level in female AIS, which can help elucidate the potential etiology of AIS.

17.
Gene ; 688: 215-220, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30572100

RESUMO

INTRODUCTION: PAX1 has been identified to be associated with adolescent idiopathic scoliosis (AIS). However, data are unavailable for northern Chinese populations, and it is important to determine the exact clinical phenotypes of the associated genetic polymorphisms. METHODS: Five PAX1 single nucleotide polymorphism (SNP) loci were genotyped in 480 northern Chinese Han AIS patients and 841 controls. A stratified genotype-phenotype correlation analysis was conducted based on positive SNP loci and the Peking Union Medical College (PUMC) classification system. Luciferase assays were performed to determine the regulation of PAX1 transcriptional activity. RESULTS: The A allele of rs17861031 and the G allele of rs6137473 were significantly associated with AIS [p = 0.05 and 3.12 × 10-3, odds ratio (OR) = 0.78 and 1.30, respectively]. Moreover, rs17861031 may regulate the PAX1 gene. The A allele of rs17861031 was identified as a risk allele for PUMC type I AIS (p = 0.03), and the G allele of rs6137473 was identified as a risk allele for PUMC type II AIS (p = 1.90 × 10-3). CONCLUSIONS: Both rs17861031 and rs6137473 were significantly associated with AIS and different PUMC classifications of AIS in a northern Chinese Han population.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único/genética , Escoliose/genética , Adolescente , Alelos , Estudos de Casos e Controles , Criança , Feminino , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Fenótipo
18.
J Med Genet ; 55(10): 675-684, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30120215

RESUMO

BACKGROUND: Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS: We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS: We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-ß) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS: Our study highlights the specific role of BMP/TGF-ß and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Variação Genética , Malformações Arteriovenosas Intracranianas/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator de Crescimento Transformador beta/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Animais Geneticamente Modificados , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , China , Estudos de Coortes , Modelos Animais de Doenças , Família , Feminino , Heterozigoto , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Transdução de Sinais , Sequenciamento Completo do Exoma , Peixe-Zebra
19.
J Hum Genet ; 63(11): 1119-1128, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30115950

RESUMO

Intracranial vertebral-basilar artery dissection (IVAD) is an arterial disorder leading to life-threatening consequences. Genetic factors are known to be causative to certain syndromic forms of IVAD. However, systematic study of the molecular basis of sporadic and isolated IVAD is lacking. To identify genetic variants contributing to the etiology of IVAD, we enrolled a cohort of 44 unrelated cases with a clinical diagnosis of isolated IVAD and performed whole-exome sequencing (WES) for all the participants; a trio exome sequencing approach was used when samples from both parents were available. Four previously reported disease-causing heterozygous variants (three in COL3A1 and one in FBN1) and seven novel heterozygous variants in IVAD-related genes were identified. In addition, six variants in novel IVAD genes including two de novo heterozygous nonsynonymous variants (each in VPS52 and CDK18), two stop-gain variants (each in MYH9 and LYL1), and two heterozygous biallelic variants in TNXB were considered to be possibly contributing to the phenotype, with unknown significance according to the existing knowledge. A significantly higher mutational rate of IVAD candidate genes was observed in patients versus our in-house controls (P = 0.002) (DISCO study, http://www.discostudy.org/ , n = 2248). Our study provided a mutational landscape for patients with isolated IVAD.


Assuntos
Aneurisma Dissecante/genética , Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Aneurisma Intracraniano/genética , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Coortes , Colágeno Tipo III/genética , Feminino , Fibrilina-1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Proteínas de Neoplasias/genética
20.
Hum Genet ; 137(6-7): 553-567, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30019117

RESUMO

With the recent advance in genome-wide association studies (GWAS), disease-associated single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) have been extensively reported. Accordingly, the issue of incorrect identification of recombination events that can induce the distortion of multi-allelic or hemizygous variants has received more attention. However, the potential distorted calculation bias or significance of a detected association in a GWAS due to the coexistence of CNVs and SNPs in the same genomic region may remain under-recognized. Here we performed the association study within a congenital scoliosis (CS) cohort whose genetic etiology was recently elucidated as a compound inheritance model, including mostly one rare variant deletion CNV null allele and one common variant non-coding hypomorphic haplotype of the TBX6 gene. We demonstrated that the existence of a deletion in TBX6 led to an overestimation of the contribution of the SNPs on the hypomorphic allele. Furthermore, we generalized a model to explain the calculation bias, or distorted significance calculation for an association study, that can be 'induced' by CNVs at a locus. Meanwhile, overlapping between the disease-associated SNPs from published GWAS and common CNVs (overlap 10%) and pathogenic/likely pathogenic CNVs (overlap 99.69%) was significantly higher than the random distribution (p < 1 × 10-6 and p = 0.034, respectively), indicating that such co-existence of CNV and SNV alleles might generally influence data interpretation and potential outcomes of a GWAS. We also verified and assessed the influence of colocalizing CNVs to the detection sensitivity of disease-associated SNP variant alleles in another adolescent idiopathic scoliosis (AIS) genome-wide association study. We proposed that detecting co-existent CNVs when evaluating the association signals between SNPs and disease traits could improve genetic model analyses and better integrate GWAS with robust Mendelian principles.


Assuntos
Anormalidades Congênitas/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Escoliose/genética , Adolescente , Anormalidades Congênitas/fisiopatologia , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Haplótipos/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Escoliose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA