Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Glob Health ; 2(1): e000121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588996

RESUMO

It is increasingly clear that resolution of complex global health problems requires interdisciplinary, intersectoral expertise and cooperation from governmental, non-governmental and educational agencies. 'One Health' refers to the collaboration of multiple disciplines and sectors working locally, nationally and globally to attain optimal health for people, animals and the environment. One Health offers the opportunity to acknowledge shared interests, set common goals, and drive toward team work to benefit the overall health of a nation. As in most countries, the health of Rwanda's people and economy are highly dependent on the health of the environment. Recently, Rwanda has developed a One Health strategic plan to meet its human, animal and environmental health challenges. This approach drives innovations that are important to solve both acute and chronic health problems and offers synergy across systems, resulting in improved communication, evidence-based solutions, development of a new generation of systems-thinkers, improved surveillance, decreased lag time in response, and improved health and economic savings. Several factors have enabled the One Health movement in Rwanda including an elaborate network of community health workers, existing rapid response teams, international academic partnerships willing to look more broadly than at a single disease or population, and relative equity between female and male health professionals. Barriers to implementing this strategy include competition over budget, poor communication, and the need for improved technology. Given the interconnectedness of our global community, it may be time for countries and their neighbours to follow Rwanda's lead and consider incorporating One Health principles into their national strategic health plans.

2.
PLoS One ; 8(1): e53586, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326462

RESUMO

BACKGROUND: Generalizable data are needed on the magnitude and determinants of adherence and virological suppression among patients on antiretroviral therapy (ART) in Africa. METHODS: We conducted a cross-sectional survey with chart abstraction, patient interviews and site assessments in a nationally representative sample of adults on ART for 6, 12 and 18 months at 20 sites in Rwanda. Adherence was assessed using 3- and 30-day patient recall. A systematically selected sub-sample had viral load (VL) measurements. Multivariable logistic regression examined predictors of non-perfect (<100%) 30-day adherence and detectable VL (>40 copies/ml). RESULTS: Overall, 1,417 adults were interviewed and 837 had VL measures. Ninety-four percent and 78% reported perfect adherence for the last 3 and 30 days, respectively. Eighty-three percent had undetectable VL. In adjusted models, characteristics independently associated with higher odds of non-perfect 30-day adherence were: being on ART for 18 months (vs. 6 months); younger age; reporting severe (vs. no or few) side effects in the prior 30 days; having no documentation of CD4 cell count at ART initiation (vs. having a CD4 cell count of <200 cells/µL); alcohol use; and attending sites which initiated ART services in 2003-2004 and 2005 (vs. 2006-2007); sites with ≥600 (vs. <600 patients) on ART; or sites with peer educators. Participation in an association for people living with HIV/AIDS; and receiving care at sites which regularly conduct home-visits were independently associated with lower odds of non-adherence. Higher odds of having a detectable VL were observed among patients at sites with peer educators. Being female; participating in an association for PLWHA; and using a reminder tool were independently associated with lower odds of having detectable VL. CONCLUSIONS: High levels of adherence and viral suppression were observed in the Rwandan national ART program, and associated with potentially modifiable factors.


Assuntos
Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Cooperação do Paciente/estatística & dados numéricos , Adolescente , Adulto , Feminino , Infecções por HIV/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Seleção de Pacientes , Ruanda/epidemiologia , Autorrelato , Fatores de Tempo , Carga Viral , Adulto Jovem
3.
J Infect Dis ; 206 Suppl 1: S74-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23169976

RESUMO

BACKGROUND: In 2008, Rwanda established an influenza sentinel surveillance (ISS) system to describe the epidemiology of influenza and monitor for the emergence of novel influenza A viruses. We report surveillance results from August 2008 to July 2010. METHODS: We conducted ISS by monitoring patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) at 6 hospitals. For each case, demographic and clinical data, 1 nasopharyngeal specimen, and 1 oropharyngeal specimen were collected. Specimens were tested by real-time reverse-transcription polymerase chain reaction for influenza A and B viruses at the National Reference Laboratory in Rwanda. RESULTS: A total of 1916 cases (945 ILI and 971 SARI) were identified. Of these, 29.2% (n = 276) of ILI and 10.4% (n = 101) of SARI cases tested positive for influenza. Of the total influenza-positive cases (n = 377), 71.8% (n = 271) were A(H1N1) pdm09, 5.6% (n = 21) influenza A(H1), 7.7% (n = 29) influenza A(H3), 1.6% (n = 6) influenza A (unsubtyped), and 13.3% (n = 50) influenza B. The percentage of positivity for influenza viruses was highest in October-November and February-March, during peaks in rainfall. CONCLUSIONS: The implementation of ISS enabled characterization of the epidemiology and seasonality of influenza in Rwanda for the first time. Future efforts should determine the population-based influenza burden to inform interventions such as targeted vaccination.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Orofaringe/virologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ruanda/epidemiologia , Vigilância de Evento Sentinela , Adulto Jovem
4.
PLoS One ; 7(6): e31572, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745652

RESUMO

BACKGROUND: In October 2009, the first case of pandemic influenza A(H1N1)pdm09 (pH1N1) was confirmed in Kigali, Rwanda and countrywide dissemination occurred within several weeks. We describe clinical and epidemiological characteristics of this epidemic. METHODS: From October 2009 through May 2010, we undertook epidemiologic investigations and response to pH1N1. Respiratory specimens were collected from all patients meeting the WHO case definition for pH1N1, which were tested using CDC's real time RT-PCR protocol at the Rwandan National Reference Laboratory (NRL). Following documented viral transmission in the community, testing focused on clinically severe and high-risk group suspect cases. RESULTS: From October 9, 2009 through May 31, 2010, NRL tested 2,045 specimens. In total, 26% (n = 532) of specimens tested influenza positive; of these 96% (n = 510) were influenza A and 4% (n = 22) were influenza B. Of cases testing influenza A positive, 96.8% (n = 494), 3% (n = 15), and 0.2% (n = 1) were A(H1N1)pdm09, Seasonal A(H3) and Seasonal A(non-subtyped), respectively. Among laboratory-confirmed cases, 263 (53.2%) were children <15 years and 275 (52%) were female. In total, 58 (12%) cases were hospitalized with mean duration of hospitalization of 5 days (Range: 2-15 days). All cases recovered and there were no deaths. Overall, 339 (68%) confirmed cases received oseltamivir in any setting. Among all positive cases, 26.9% (143/532) were among groups known to be at high risk of influenza-associated complications, including age <5 years 23% (122/532), asthma 0.8% (4/532), cardiac disease 1.5% (8/532), pregnancy 0.6% (3/532), diabetes mellitus 0.4% (2/532), and chronic malnutrition 0.8% (4/532). CONCLUSIONS: Rwanda experienced a PH1N1 outbreak which was epidemiologically similar to PH1N1 outbreaks in the region. Unlike seasonal influenza, children <15 years were the most affected by pH1N1. Lessons learned from the outbreak response included the need to strengthen integrated disease surveillance, develop laboratory contingency plans, and evaluate the influenza sentinel surveillance system.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Feminino , Humanos , Influenza Humana/virologia , Masculino , Ruanda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA