Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Nat Rev Endocrinol ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608277

RESUMO

Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.

2.
J Hepatol ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34555423

RESUMO

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to nonalcoholic fatty liver disease (NAFLD) remains unknown. METHODS: By performing a liver proteomic analysis from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples of patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the liver of mice. RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and NASH) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoiltransferase I (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY: We show that autophagy-related gene 3 (ATG3) contributes to the progression of NAFLD in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD, by stimulating SIRT1, CPT1a and mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.

3.
Nat Commun ; 12(1): 5274, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489410

RESUMO

The classical dogma states that brown adipose tissue (BAT) plays a major role in the regulation of temperature in neonates. However, although BAT has been studied in infants for more than a century, the knowledge about its physiological features at this stage of life is rather limited. This has been mainly due to the lack of appropriate investigation methods, ethically suitable for neonates. Here, we have applied non-invasive infrared thermography (IRT) to investigate neonatal BAT activity. Our data show that BAT temperature correlates with body temperature and that mild cold stimulus promotes BAT activation in newborns. Notably, a single short-term cold stimulus during the first day of life improves the body temperature adaption to a subsequent cold event. Finally, we identify that bone morphogenic protein 8B (BMP8B) is associated with the BAT thermogenic response in neonates. Overall, our data uncover key features of the setup of BAT thermogenesis in newborns.


Assuntos
Tecido Adiposo Marrom/fisiologia , Temperatura Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/sangue , Peso ao Nascer , Glicemia/análise , Temperatura Baixa , Fatores de Crescimento de Fibroblastos/sangue , Hormônios/sangue , Humanos , Recém-Nascido , Termogênese/fisiologia
4.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417460

RESUMO

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Restrição Calórica , Linhagem Celular , Colforsina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucocorticoides/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicosilação , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Genética/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
5.
Arthritis Rheumatol ; 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398520

RESUMO

OBJECTIVE: To investigate whether thermogenesis and the hypothalamus may be involved in the physiopathology of experimental arthritis (EA). METHODS: EA was induced in Lewis male rats by intradermal injection of Freund's complete adjuvant (FCA). Food intake, body weight, plasma cytokines, thermographic analysis, gene and protein expression of thermogenic markers in brown (BAT) and white (WAT) adipose tissue and hypothalamic AMP-activated protein kinase (AMPK) were analyzed. Virogenetic activation of hypothalamic AMPK was performed. RESULTS: We first demonstrate that EA is associated with increased BAT thermogenesis and browning of subcutaneous WAT (sWAT) leading to elevated energy expenditure. Moreover, rats suffering EA show inhibition of hypothalamic AMPK, a canonical energy sensor modulating energy homeostasis at central level. Notably, specific genetic activation of AMPK in the ventromedial nucleus of the hypothalamus (VMH; a key site modulating energy metabolism) reverses the effect of EA on energy balance, brown fat and browning, as well as promoting an amelioration of the inflammatory status. CONCLUSION: Overall, these data indicate that EA promotes a central catabolic state that can be targeted and reversed by the activation of hypothalamic AMPK. This might open new therapeutic alternatives to treat rheumatoid arthritis (RA)-associated metabolic comorbidities, improving RA-patients overall prognosis.

6.
J Cereb Blood Flow Metab ; : 271678X211039617, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427142

RESUMO

Gene vectors targeting CNS endothelial cells allow to manipulate the blood-brain barrier and to correct genetic defects in the CNS. Because vectors based on the adeno-associated virus (AAV) have a limited capacity, it is essential that the DNA sequence controlling gene expression is short. In addition, it must be specific for endothelial cells to avoid off-target effects. To develop improved regulatory sequences with selectivity for brain endothelial cells, we tested the transcriptional activity of truncated promoters of eleven (brain) endothelial-specific genes in combination with short regulatory elements, i.e., the woodchuck post-transcriptional regulatory element (W), the CMV enhancer element (C), and a fragment of the first intron of the Tie2 gene (S), by transfecting brain endothelial cells of three species. Four combinations of regulatory elements and short promoters (Cdh5, Ocln, Slc2a1, and Slco1c1) progressed through this in-vitro pipeline displaying suitable activity. When tested in mice, the regulatory sequences C-Ocln-W and C-Slc2a1-S-W enabled a stronger and more specific gene expression in brain endothelial cells than the frequently used CAG promoter. In summary, the new regulatory elements efficiently control gene expression in brain endothelial cells and may help to specifically target the blood-brain barrier with gene therapy vectors.

7.
Cell Metab ; 33(9): 1820-1835.e9, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34343501

RESUMO

Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.

8.
Nat Metab ; 3(8): 1071-1090, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341568

RESUMO

Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic ß-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.


Assuntos
Encéfalo/metabolismo , Células Ependimogliais/metabolismo , Receptores ErbB/metabolismo , Leptina/metabolismo , Metabolismo dos Lipídeos , Pâncreas/metabolismo , Receptores para Leptina/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Fosforilação
9.
Handb Clin Neurol ; 180: 253-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225934

RESUMO

The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.


Assuntos
Células Ependimogliais , Eminência Mediana , Núcleo Arqueado do Hipotálamo , Barreira Hematoencefálica , Células Endoteliais , Humanos , Hipotálamo
10.
Eur J Endocrinol ; 185(3): R75-R91, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34260412

RESUMO

Obesity is a global pandemic with a large health and economic burden worldwide. Bodyweight is regulated by the ability of the CNS, and especially the hypothalamus, to orchestrate the function of peripheral organs that play a key role in metabolism. Gut hormones play a fundamental role in the regulation of energy balance, as they modulate not only feeding behavior but also energy expenditure and nutrient partitioning. This review examines the recent discoveries about hormones produced in the stomach and gut, which have been reported to regulate food intake and energy expenditure in preclinical models. Some of these hormones act on the hypothalamus to modulate thermogenesis and adiposity in a food intake-independent fashion. Finally, the association of these gut hormones to eating, energy expenditure, and weight loss after bariatric surgery in humans is discussed.


Assuntos
Encéfalo/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Hormônios Gastrointestinais/metabolismo , Humanos , Hipotálamo/metabolismo
11.
J Clin Invest ; 131(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34324439

RESUMO

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.

12.
Mol Metab ; 53: 101275, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34153521

RESUMO

OBJECTIVE: Neddylation is a druggable and reversible ubiquitin-like post-translational modification upregulated in many diseases, including liver fibrosis, hepatocellular carcinoma, and more recently, non-alcoholic fatty liver disease (NAFLD). Herein, we propose to address the effects of neddylation inhibition and the underlying mechanisms in pre-clinical models of NAFLD. METHODS: Hepatic neddylation measured by immunohistochemical analysis and NEDD8 serum levels measured by ELISA assay were evaluated in NAFLD clinical and pre-clinical samples. The effects of neddylation inhibition by using a pharmacological small inhibitor, MLN4924, or molecular approaches were assessed in isolated mouse hepatocytes and pre-clinical mouse models of diet-induced NAFLD, male adult C57BL/6 mice, and the AlfpCre transgenic mice infected with AAV-DIO-shNedd8. RESULTS: Neddylation inhibition reduced lipid accumulation in oleic acid-stimulated mouse primary hepatocytes and ameliorated liver steatosis, preventing lipid peroxidation and inflammation in the mouse models of diet-induced NAFLD. Under these conditions, increased Deptor levels and the concomitant repression of mTOR signaling were associated with augmented fatty acid oxidation and reduced lipid content. Moreover, Deptor silencing in isolated mouse hepatocytes abolished the anti-steatotic effects mediated by neddylation inhibition. Finally, serum NEDD8 levels correlated with hepatic neddylation during the disease progression in the clinical and pre-clinical models CONCLUSIONS: Overall, the upregulation of Deptor, driven by neddylation inhibition, is proposed as a novel effective target and therapeutic approach to tackle NAFLD.

13.
Front Endocrinol (Lausanne) ; 12: 669980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149618

RESUMO

Anorexia nervosa (AN) is an eating disorder leading to malnutrition and, ultimately, to energy wasting and cachexia. Rodents develop activity-based anorexia (ABA) when simultaneously exposed to a restricted feeding schedule and allowed free access to running wheels. These conditions lead to a life-threatening reduction in body weight, resembling AN in human patients. Here, we investigate the effect of ABA on whole body energy homeostasis at different housing temperatures. Our data show that ABA rats develop hyperactivity and hypophagia, which account for a massive body weight loss and muscle cachexia, as well as reduced uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT), but increased browning of white adipose tissue (WAT). Increased housing temperature reverses not only the hyperactivity and weight loss of animals exposed to the ABA model, but also hypothermia and loss of body and muscle mass. Notably, despite the major metabolic impact of ABA, none of the changes observed are associated to changes in key hypothalamic pathways modulating energy metabolism, such as AMP-activated protein kinase (AMPK) or endoplasmic reticulum (ER) stress. Overall, this evidence indicates that although temperature control may account for an improvement of AN, key hypothalamic pathways regulating thermogenesis, such as AMPK and ER stress, are unlikely involved in later stages of the pathophysiology of this devastating disease.

14.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066779

RESUMO

The mechanisms underlying the transport of leptin into the brain are still largely unclear. While the leptin receptor has been implicated in the transport process, recent evidence has suggested an additional role of LRP2 (megalin). To evaluate the function of LRP2 for leptin transport across the blood-brain barrier (BBB), we developed a novel leptin-luciferase fusion protein (pLG), which stimulated leptin signaling and was transported in an in vitro BBB model based on porcine endothelial cells. The LRP inhibitor RAP did not affect leptin transport, arguing against a role of LRP2. In line with this, the selective deletion of LRP2 in brain endothelial cells and epithelial cells of the choroid plexus did not influence bodyweight, body composition, food intake, or energy expenditure of mice. These findings suggest that LRP2 at the BBB is not involved in the transport of leptin into the brain, nor in the development of obesity as has previously been described.


Assuntos
Barreira Hematoencefálica/metabolismo , Leptina/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Animais , Sítios de Ligação , Composição Corporal , Peso Corporal , Células CHO , Plexo Corióideo/metabolismo , Cricetulus , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Luciferases/metabolismo , Masculino , Modelos Biológicos , Fosforilação , Transporte Proteico , Receptores para Leptina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Suínos
15.
Front Endocrinol (Lausanne) ; 12: 670357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927698

RESUMO

Objective: Angiopoietin-like protein 3(ANGPTL3) is an important regulator of lipoprotein metabolism in the fed state by inhibiting the enzyme lipoprotein lipase in oxidative tissues. However, the possible role of ANGPTL3 throughout gestation and its relationship with hormonal and biochemical variables are still unknown. The aim of this study was to determinate serum ANGPTL3 level in healthy non-pregnant women, during healthy and preeclamptic pregnancy and postpartum. Methods: Serum ANGPTL3 was analyzed by enzyme-linked immunosorbent assay (ELISA), in a prospective cohort of healthy pregnant women (n = 52) and women with mild preeclampsia (n = 21), and women at three months postpartum (n = 20) and healthy non-pregnant women (n = 20). The results obtained were correlated with biochemical, hormonal and anthropometric variables and insulin resistance indices. Results: Levels of ANGPTL3 were not different between the follicular and the luteal phases of the cycle in healthy non-pregnant women. There was a significant reduction in serum ANGPTL3 levels from the first to the third trimester in healthy pregnant women compared with healthy non-pregnant and postpartum women (p <0.01). ANGPTL3 levels do not differ significantly during the three trimesters of pregnancy neither in healthy women nor in preeclamptic women. The serum levels of ANGPTL3 in women who developed preeclampsia are not statistically different from those observed in healthy pregnant women in each trimester of pregnancy. A significant lineal positive correlation was observed between serum ANGPTL3 levels and triglyceride (P =0.0186, r =0.52), very low-density lipoprotein cholesterol (P =0.0224, r =0.50), and total cholesterol levels (P =0.0220, r =0.50) in healthy non-pregnant women (P 0.05). Besides, there were no significant correlations between serum ANGPTL3 and body mass index (BMI), high-density lipoprotein cholesterol, glucose, insulin, leptin, or HOMA-IR (P >0.05). Conclusions: We describe for the first time the profile of ANGPTL3 throughout pregnancy and postpartum as well as and discussed about explore their potential contribution interactions with lipoprotein metabolism throughout pregnancy and postpartum. Thus, low levels of ANGPTL3 during pregnancy might favor lipid uptake in oxidative tissues as the main maternal energy source, while may helping to preserve glucose for use by the fetus and placenta.

16.
Redox Biol ; 41: 101945, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744652

RESUMO

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.


Assuntos
Pró-Opiomelanocortina , Sirtuína 3 , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Sirtuína 3/metabolismo
17.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546289

RESUMO

Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine's effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine's effects on energy balance.


Assuntos
Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dinorfinas/metabolismo , Metabolismo Energético , Região Hipotalâmica Lateral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
18.
Br J Pharmacol ; 178(10): 2131-2145, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32986861

RESUMO

BACKGROUND AND PURPOSE: Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to nutritional intake that exerts a wide range of effects by activating GLP-2 receptors. In addition to its intestinotrophic effects, GLP-2 also positively influences glucose metabolism under conditions of obesity, but the mechanisms behind this remain unclear. Here, we have investigated the molecular role of the GLP-2/GLP-2 receptor axis in energetic metabolism, focusing on its potential modulatory effects on adipose tissue. EXPERIMENTAL APPROACH: Physiological measurements (body weight, food intake, locomotor activity, and energy expenditure) and metabolic studies (glucose and insulin tolerance tests) were performed on lean and obese mice treated with the protease-resistant GLP-2 analogue teduglutide. KEY RESULTS: Acute but not chronic centrally administered teduglutide decreased food intake and weight-gain. By contrast, chronic activation of peripheral GLP-2 receptors increased body weight-independent glucose tolerance and had anti-inflammatory effects on visceral adipose tissue. Using a gene silencing approach, we found that adipose tissue is necessary for these beneficial effects of teduglutide. Finally, teduglutide regulates the inflammatory state and acts as an anabolic signal in human adipocytes. CONCLUSION AND IMPLICATIONS: Overall, our data identify adipose tissue as a new, clinically relevant, site of action for GLP-2 activity in obesity. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.

19.
Pharmacol Ther ; 219: 107693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32987056

RESUMO

Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...