Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thorax ; 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949724

RESUMO

BACKGROUND: Air pollution exposure is associated with disease severity, progression and mortality in patients with idiopathic pulmonary fibrosis (IPF). Combined impacts of environmental and socioeconomic factors on outcomes in patients with IPF are unknown. The objectives of this study were to characterise the relationships between relative environmental and social disadvantage with clinical outcomes in patients with IPF. METHODS: Patients with IPF were identified from a longitudinal database at University of California, San Francisco. Residential addresses were geocoded and linked to the CalEnviroScreen 3.0 (CES), a tool that quantifies environmental burden in California communities, combining population, environmental and pollution vulnerability into individual and composite scores (higher scores indicating greater disadvantage). Unadjusted and adjusted linear and logistic regression and Fine and Gray proportional hazards models were used. RESULTS: 603 patients were included. Higher CES was associated with lower baseline forced vital capacity (ß=-0.073, 95% CI -0.13 to -0.02; p=0.006) and diffusion capacity of the lung for carbon monoxide (ß=-0.11, 95% CI -0.16 to -0.06; p<0.001). Patients in the highest population vulnerability quartile were less likely to be on antifibrotic therapy (OR=0.33; 95% CI 0.18 to 0.60; p=0.001) at time of enrolment, compared with those in the lowest quartile. An association between CES and mortality was suggested, but sensitivity analyses demonstrated inconsistent results. Relative disadvantage of the study cohort appeared lower compared with the general population. CONCLUSIONS: Higher environmental exposures and vulnerability were associated with lower baseline lung function and lower antifibrotic use, suggesting that relative socioenvironmental disadvantage has meaningful impacts on patients with IPF.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34417545

RESUMO

BACKGROUND: Previous research has revealed links between air pollution exposure and metabolic syndrome in adults; however, these associations are less explored in children. OBJECTIVE: This study aims to investigate the association between traffic-related air pollutants (TRAP) and biomarkers of metabolic dysregulation, oxidative stress, and lung epithelial damage in children. METHODS: We conducted cross-sectional analyses in a sample of predominantly Latinx, low-income children (n = 218) to examine associations between air pollutants (nitrogen dioxide (NO2), nitrogen oxides (NOx), elemental carbon, polycyclic aromatic hydrocarbons, carbon monoxide (CO), fine particulates (PM2.5)) and biomarkers of metabolic function (high-density lipoprotein (HDL), hemoglobin A1c (HbA1c), oxidative stress (8-isoprostane), and lung epithelial damage (club cell protein 16 (CC16)). RESULTS: HDL cholesterol showed an inverse association with NO2 and NOx, with the strongest relationship between HDL and 3-month exposure to NO2 (-15.4 mg/dL per IQR increase in 3-month NO2, 95% CI = -27.4, -3.4). 8-isoprostane showed a consistent pattern of increasing values with 1-day and 1-week exposure across all pollutants. Non-significant increases in % HbA1c were found during 1-month time frames and decreasing CC16 in 3-month exposure time frames. CONCLUSION: Our results suggest that TRAP is significantly associated with decreased HDL cholesterol in longer-term time frames and elevated 8-isoprostane in shorter-term time frames. TRAP could have the potential to influence lifelong metabolic patterns, through metabolic effects in childhood.

3.
Environ Res ; 195: 110870, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33587949

RESUMO

BACKGROUND: Metabolic syndrome increases the risk of cardiovascular disease in adults. Antecedents likely begin in childhood and whether childhood exposure to air pollution plays a contributory role is not well understood. OBJECTIVES: To assess whether children's exposure to air pollution is associated with markers of risk for metabolic syndrome and oxidative stress, a hypothesized mediator of air pollution-related health effects. METHODS: We studied 299 children (ages 6-8) living in the Fresno, CA area. At a study center visit, questionnaire and biomarker data were collected. Outcomes included hemoglobin A1c (HbA1c), urinary 8-isoprostane, systolic blood pressure (SBP), and BMI. Individual-level exposure estimates for a set of four pollutants that are constituents of traffic-related air pollution (TRAP) - the sum of 4-, 5-, and 6-ring polycyclic aromatic hydrocarbon compounds (PAH456), NO2, elemental carbon, and fine particulate matter (PM2.5) - were modeled at the primary residential location for 1-day lag, and 1-week, 1-month, 3-month, 6-month, and 1-year averages prior to each participant's visit date. Generalized additive models were used to estimate associations between each air pollutant exposure and outcome. RESULTS: The study population was 53% male, 80% Latinx, 11% Black and largely low-income (6% were White and 3% were Asian/Pacific Islander). HbA1c percentage was associated with longer-term increases in TRAP; for example a 4.42 ng/m3 increase in 6-month average PAH456 was associated with a 0.07% increase (95% CI: 0.01, 0.14) and a 3.62 µg/m3 increase in 6-month average PM2.5 was associated with a 0.06% increase (95% CI: 0.01, 0.10). The influence of air pollutants on blood pressure was strongest at 3 months; for example, a 6.2 ppb increase in 3-month average NO2 was associated with a 9.4 mmHg increase in SBP (95% CI: 2.8, 15.9). TRAP concentrations were not significantly associated with anthropometric or adipokine measures. Short-term TRAP exposure averages were significantly associated with creatinine-adjusted urinary 8-isoprostane. DISCUSSION: Our results suggest that both short- and longer-term estimated individual-level outdoor residential exposures to several traffic-related air pollutants, including ambient PAHs, are associated with biomarkers of risk for metabolic syndrome and oxidative stress in children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pressão Sanguínea , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Glucose , Humanos , Masculino , Estresse Oxidativo , Material Particulado/análise , Material Particulado/toxicidade
4.
Atmos Environ (1994) ; 2422020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32982565

RESUMO

As part of our ongoing research to understand the impact of polycyclic aromatic hydrocarbon (PAH) exposures on health in the San Joaquin Valley, we evaluated airborne PAH concentration data collected over 19 years (2000-2019) at the central air monitoring site in Fresno, California. We found a dramatic decline in outdoor airborne PAH concentrations between 2000 and 2004 that has been maintained through 2019. This decline was present in both the continuous particle-bound PAHs and the filter-based individual PAHs. The decline was more extreme when restricted to winter concentrations. Annual mean PAHs concentrations in 2017- 2018 of particle-bound PAHs were 6.8 ng/m3 or 62% lower than 2000 - 2001. The decline for winter concentrations of continuous particle-bound PAHs between winter 2019 and winter 2001 was 17.2 ng/m3, a drop of 70%. The 2001 to 2018 decline in average wintertime concentrations for filter-based individual PAHs was 82%. We examined industrial emissions, on-road vehicle emissions, residential wood burning, and agricultural and biomass waste burning as possible explanations. The major decline in PAHs from 2000-2004 was coincident with and most likely due to a similar decline in the amount of agricultural and biomass waste burned in Fresno and Madera Counties. On-road vehicle emissions and residential wood burning did not decline until after 2005. Industrial emissions were too low (2% of total) to explain such large decreases in PAH concentrations.

5.
Occup Environ Med ; 76(12): 888-894, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615860

RESUMO

OBJECTIVE: Occupational dust exposure has been associated with accelerated lung function decline, which in turn is associated with overall morbidity and mortality. In the current study, we assess potential benefits on lung function of hypothetical interventions that would reduce occupational exposure to fine particulate matter (PM2.5) while adjusting for the healthy worker survivor effect. METHODS: Analyses were performed in a cohort of 6485 hourly male workers in an aluminium manufacturing company in the USA, followed between 1996 and 2013. We used the parametric g-formula to assess lung function decline over time under hypothetical interventions while also addressing time-varying confounding by underlying health status, using a composite risk score based on health insurance claims. RESULTS: A counterfactual scenario envisioning a limit on exposure equivalent to the 10th percentile of the observed exposure distribution of 0.05 mg/m3 was associated with an improvement in forced expiratory volume in one second (FEV1) equivalent to 37.6 mL (95% CI 13.6 to 61.6) after 10 years of follow-up when compared with the observed. Assuming a linear decrease and (from NHANES reference values), a 20 mL decrease per year for a 1.8 m-tall man as they age, this 37.6 mL FEV1 loss over 10 years associated with observed exposure would translate to approximately a 19% increase to the already expected loss per year from age alone. CONCLUSIONS: Our results indicate that occupational PM2.5 exposure in the aluminium industry accelerates lung function decline over age. Reduction in exposure may mitigate accelerated loss of lung function over time in the industry.


Assuntos
Alumínio/toxicidade , Exposição por Inalação/efeitos adversos , Pneumopatias/fisiopatologia , Doenças Profissionais/fisiopatologia , Exposição Ocupacional/efeitos adversos , Material Particulado/toxicidade , Adulto , Poeira/análise , Humanos , Pneumopatias/etiologia , Masculino , Indústria Manufatureira , Doenças Profissionais/etiologia , Testes de Função Respiratória , Estados Unidos
6.
J Occup Environ Hyg ; 16(11): 735-744, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545144

RESUMO

Wildland firefighters engaged in fire suppression activities are often exposed to hazardous air pollutants such as polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM2.5) during wildfires with no respiratory protection. Although the most significant exposures to smoke likely occur on the fireline, wildland firefighters may also be exposed at the incident command post (ICP), an area designated for wildfire suppression support operations. Our objective was to characterize exposures of PAHs and PM2.5 near an ICP during a wildfire event in California. We collected area air samples for PAHs and PM2.5, during the first 12 days of a wildfire event. PAH area air samples were actively collected in 12-hr shifts (day and night) using XAD4-coated quartz fiber filters and XAD2 sorbent tubes and analyzed for 17 individual PAHs. Hourly area PM2.5 concentrations were measured with an Environmental Beta Attenuation Monitor. Most PAH concentrations generally had similar concentrations during the day and night. PM2.5 concentrations were higher during the day, due to increased fire activity, than at night. The highest concentrations of the 17 PAHs measured were for naphthalene, phenanthrene, and retene. The location of an ICP may be a critical factor in reducing these potential exposures to firefighters during wildfire events. Additionally, exposures could be reduced by utilizing clean air tents or sleeping trailers with HEPA filtration or setting up smaller camps in less smokey areas closer to the fireline for firefighters. Although measured exposures to PAHs for firefighters from smoke are lower at an ICP, these exposures still contribute to the overall cumulative work exposures.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Bombeiros , Humanos , Fumaça/análise , Incêndios Florestais
9.
Environ Sci Technol ; 52(19): 11267-11275, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30200753

RESUMO

Traditional methods for measuring personal exposure to fine particulate matter (PM2.5) are cumbersome and lack spatiotemporal resolution; methods that are time-resolved are limited to a single species/component of PM. To address these limitations, we developed an automated microenvironmental aerosol sampler (AMAS), capable of resolving personal exposure by microenvironment. The AMAS is a wearable device that uses a GPS sensor algorithm in conjunction with a custom valve manifold to sample PM2.5 onto distinct filter channels to evaluate home, school, and other (e.g., outdoors, in transit, etc.) exposures. Pilot testing was conducted in Fresno, CA where 25 high-school participants ( n = 37 sampling events) wore an AMAS for 48-h periods in November 2016. Data from 20 (54%) of the 48-h samples collected by participants were deemed valid and the filters were analyzed for PM2.5 black carbon (BC) using light transmissometry and aerosol oxidative potential (OP) using the dithiothreitol (DTT) assay. The amount of inhaled PM2.5 was calculated for each microenvironment to evaluate the health risks associated with exposure. On average, the estimated amount of inhaled PM2.5 BC (µg day-1) and OP [(µM min-1) day-1] was greatest at home, owing to the proportion of time spent within that microenvironment. Validation of the AMAS demonstrated good relative precision (8.7% among collocated instruments) and a mean absolute error of 22% for BC and 33% for OP when compared to a traditional personal sampling instrument. This work demonstrates the feasibility of new technology designed to quantify personal exposure to PM2.5 species within distinct microenvironments.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis , Carbono , Estresse Oxidativo , Material Particulado
10.
Chest ; 154(1): 119-125, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29355549

RESUMO

BACKGROUND: Air pollution exposure is associated with acute exacerbation, disease progression, and mortality in patients with idiopathic pulmonary fibrosis (IPF). The objective of this study was to describe the impact of air pollution exposures on disease severity, as well as changes in lung function, in patients with IPF. METHODS: Using home spirometers and symptom diaries, 25 patients with IPF prospectively recorded FVC weekly for up to 40 weeks. Residential addresses were geocoded to estimate weekly mean air pollution exposures for ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter < 2.5 or 10 µm in aerodynamic diameter (PM2.5 and PM10, respectively). The dependence of weekly clinical measurements on preceding levels of each pollutant was assessed with the use of linear mixed models, yielding beta-coefficients with 95% CIs, using varying lag times. RESULTS: Lower mean FVC % predicted was consistently associated with increased mean exposures to PM10 in the 2 to 5 weeks preceding clinical measurements (range, -0.46 to -0.39 [95% CI, -0.73 to -0.13]; P < .005). Lower mean FVC % predicted over the study period was inversely related to mean levels of NO2 (-0.45 [95% CI, -0.85 to -0.05]; P = .03), PM2.5 (-0.45 [95% CI, -0.84 to -0.07]; P = .02), and PM10 (-0.57 [95% CI, -0.92 to -0.21]; P = .003), averaged over the study. Weekly changes in FVC and changes over 40 weeks were independent of pollution exposures. CONCLUSIONS: Higher air pollution exposures were associated with lower lung function, but not changes in lung function, in patients with IPF. Further studies are needed to characterize the mechanisms underlying this relationship.


Assuntos
Poluição do Ar/efeitos adversos , Fibrose Pulmonar Idiopática/fisiopatologia , Fenômenos Fisiológicos Respiratórios , Idoso , California/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/etiologia , Masculino , Morbidade/tendências , Prognóstico , Estudos Prospectivos , Fatores de Risco , Espirometria , Fatores de Tempo
11.
Environ Sci Technol ; 51(11): 6461-6469, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28498656

RESUMO

Wildland firefighters suppressing wildland fires or conducting prescribed fires work long shifts during which they are exposed to high levels of wood smoke with no respiratory protection. Polycyclic aromatic hydrocarbons (PAHs) are hazardous air pollutants formed during incomplete combustion. Exposure to PAHs was measured for 21 wildland firefighters suppressing two wildland fires and 4 wildland firefighters conducting prescribed burns in California. Personal air samples were actively collected using XAD4-coated quartz fiber filters and XAD2 sorbent tubes. Samples were analyzed for 17 individual PAHs through extraction with dichloromethane and gas chromatograph-mass spectrometer analysis. Naphthalene, retene, and phenanthrene were consistently the highest measured PAHs. PAH concentrations were higher at wildland fires compared to prescribed fires and were highest for firefighters during job tasks that involve the most direct contact with smoke near an actively burning wildland fire. Although concentrations did not exceed current occupational exposure limits, wildland firefighters are exposed to PAHs not only on the fire line at wildland fires, but also while working prescribed burns and while off-duty. Characterization of occupational exposures from wildland firefighting is important to understand better any potential long-term health effects.


Assuntos
Monitoramento Ambiental , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , California , Incêndios , Humanos
12.
J Occup Environ Med ; 59(5): 446-452, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28486341

RESUMO

OBJECTIVE: The main objective of this pilot study was to gather preliminary information about how telomere length (TL) varies in relation to exposure to polycyclic aromatic hydrocarbons (PAHs) in children living in a highly polluted city. METHODS: We conducted a cross-sectional study of children living in Fresno, California (n = 14). Subjects with and without asthma were selected based on their annual average PAH level in the 12-months prior to their blood draw. We measured relative telomere length from peripheral blood mononuclear cells (PBMC). RESULTS: We found an inverse linear relationship between average PAH level and TL (R = 0.69), as well as between age and TL (R = 0.21). Asthmatics had shorter mean telomere length than non-asthmatics (TLasthmatic = 1.13, TLnon-asthmatic = 1.29). CONCLUSIONS: These preliminary findings suggest that exposure to ambient PAH may play a role in telomere shortening.Become familiar with previous evidence suggesting that telomere length may be a biomarker of air pollution-induced cytotoxicity.Summarize the new findings on the association between polycyclic aromatic hydrocarbon (PAH) exposure and telomere length in adolescents, including those with asthma.Discuss the implications for recommendations and policies to mitigate the health and respiratory effects of traffic-related air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Homeostase do Telômero/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Emissões de Veículos/toxicidade , Adolescente , Poluição do Ar/estatística & dados numéricos , Asma/fisiopatologia , California , Criança , Estudos Transversais , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Masculino , Veículos Automotores , Projetos Piloto
13.
PLoS One ; 11(6): e0156613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27249060

RESUMO

Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 µm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5.


Assuntos
Alumínio , Indústrias , Isquemia Miocárdica/induzido quimicamente , Material Particulado/toxicidade , Estudos de Coortes , Humanos , Exposição Ocupacional , Estados Unidos
14.
Am J Epidemiol ; 183(9): 861-8, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033425

RESUMO

Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias.


Assuntos
Metalurgia , Isquemia Miocárdica/induzido quimicamente , Doenças Profissionais/epidemiologia , Exposição Ocupacional/efeitos adversos , Material Particulado/efeitos adversos , Alumínio , Viés , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa , Fatores de Tempo , Estados Unidos
15.
Air Qual Atmos Health ; 9(8): 899-908, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28083077

RESUMO

Despite increasing evidence that airborne polycyclic aromatic hydrocarbon (PAH) exposures contribute to adverse health outcomes for sensitive populations, limited data are available on short-term intraurban spatial distributions for use in epidemiologic research. Exposure assessments for airborne PAHs are uncommon because air sampling for PAHs is a labor-, equipment-, and time-intensive task. To address this gap we measured wintertime PAH concentrations during 2010-2011 in Bakersfield, California, USA, a major city in the Southern San Joaquin Valley. Specifically, 58 96-hour integrated PAH samples were collected during 4 time periods at 14 locations from November 2010 to January 2011; duplicates were collected at two sites. We also collected elemental carbon (EC) at the same 14 sites and analyzed the two time periods with the highest ambient PAH pollution. We used linear regression models to quantify the relationship between potential spatial and temporal predictors of PAH concentrations. We found that wintertime PAH concentrations in Bakersfield, CA, are best predicted by meteorological variables and traffic proximity. Our model explains a moderate amount of the variability in the data (R2=0.58), likely reflecting the major sources of PAHs in Bakersfield. We also observed that PAH concentrations were more spatially variable than EC concentrations. Comparing our data to historical monitoring data at one location in Bakersfield showed that the relatively low PAH concentrations during the 2010-2011 winter in Bakersfield is part of a long-term trend in decreasing PAH concentrations.

16.
Epidemiology ; 26(6): 806-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26079662

RESUMO

BACKGROUND: We investigated the incidence of ischemic heart disease (IHD) in relation to accumulated exposure to particulate matter (PM) in a cohort of aluminum workers. We adjusted for time varying confounding characteristic of the healthy worker survivor effect, using a recently introduced method for the estimation of causal target parameters. METHODS: Applying longitudinal targeted minimum loss-based estimation, we estimated the difference in marginal cumulative risk of IHD in the cohort comparing counterfactual outcomes if always exposed above to always exposed below a PM2.5 exposure cut-off. Analyses were stratified by sub-cohort employed in either smelters or fabrication facilities. We selected two exposure cut-offs a priori, at the median and 10th percentile in each sub-cohort. RESULTS: In smelters, the estimated IHD risk difference after 15 years of accumulating PM2.5 exposure during follow-up was 2.9% (0.6%, 5.1%) using the 10th percentile cut-off of 0.10 mg/m. For fabrication workers, the difference was 2.5% (0.8%, 4.1%) at the 10th percentile of 0.06 mg/m. Using the median exposure cut-off, results were similar in direction but smaller in size. We present marginal incidence curves describing the cumulative risk of IHD over the course of follow-up for each sub-cohort under each intervention regimen. CONCLUSIONS: The accumulation of exposure to PM2.5 appears to result in higher risks of IHD in both aluminum smelter and fabrication workers. This represents the first longitudinal application of targeted minimum loss-based estimation, a method for generating doubly robust semi-parametric efficient substitution estimators of causal parameters, in the fields of occupational and environmental epidemiology.


Assuntos
Metalurgia , Isquemia Miocárdica/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Material Particulado , Adulto , Alumínio , Estudos de Coortes , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Indústria Manufatureira , Pessoa de Meia-Idade , Análise de Regressão , Fatores de Risco , Estados Unidos/epidemiologia
17.
J Expo Sci Environ Epidemiol ; 25(3): 295-302, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24938508

RESUMO

Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N=297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m(3) increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Adolescente , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Asma/fisiopatologia , California , Criança , Estudos Transversais , Monitoramento Ambiental , Feminino , Fluxo Expiratório Forçado/efeitos dos fármacos , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Modelos Lineares , Pulmão/fisiopatologia , Masculino , Hidrocarbonetos Policíclicos Aromáticos/análise , Espirometria , Capacidade Vital/efeitos dos fármacos
18.
Environ Res ; 135: 221-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282280

RESUMO

BACKGROUND: Preterm birth is an important marker of health and has a prevalence of 12-13% in the U.S. Polycyclic aromatic hydrocarbons (PAHs) are a group of organic contaminants that form during the incomplete combustion of hydrocarbons, such as coal, diesel and gasoline. Studies suggest that exposure to PAHs during pregnancy is related to adverse birth outcomes. The aim of this study is to evaluate the association between exposure to PAHs during the pregnancy and preterm birth. METHODS: The study population included births from years 2001 to 2006 of women whose maternal residence was within 20km of the primary monitoring site in Fresno, California. Data in the Fresno area were used to form a spatio-temporal model to assign daily exposure to PAHs with 4, 5, or 6 rings at the maternal residence throughout pregnancy of all of the births in the study area. Gestational age at birth and relevant covariates were extracted from the birth certificate. RESULTS: We found an association between PAHs during the last 6 weeks of pregnancy and birth at 20-27 weeks (OR=2.74; 95% CI: 2.24-3.34) comparing the highest quartile to the lower three. The association was consistent when each quartile was compared to the lowest (OR2nd=1.49, 95% CI: 1.08-2.06; OR3rd=2.63, 95% CI:1.93-3.59; OR4th=3.94, 95% CI:3.03-5.12). Inverse associations were also observed for exposure to PAHs during the entire pregnancy and the first trimester and birth at 28-31 weeks and 20-27 weeks. CONCLUSION: An association between PAH exposure during the 6 weeks before delivery and early preterm birth was observed. However, the inverse association with early preterm birth offers an unclear, and potentially complex, inference of these associations.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Materna/efeitos adversos , Modelos Biológicos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Nascimento Prematuro/epidemiologia , Estações do Ano , California/epidemiologia , Feminino , Humanos , Razão de Chances , Gravidez , Nascimento Prematuro/induzido quimicamente , Prevalência
19.
Am J Epidemiol ; 180(6): 608-15, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25125691

RESUMO

Marginal structural models (MSMs) and inverse probability weighting can be used to estimate risk in a cohort of active workers if there is a time-varying confounder (e.g., health status) affected by prior exposure-a feature of the healthy worker survivor effect. We applied Cox MSMs in a study of incident ischemic heart disease and exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5) in a cohort of 12,949 actively employed aluminum workers in the United States. The cohort was stratified by work process into workers in smelting facilities, herein referred to as "smelters" and workers in fabrication facilities, herein referred to as "fabricators." The outcome was assessed by using medical claims data from 1998 to 2012. A composite risk score based on insurance claims was treated as a time-varying measure of health status. Binary PM2.5 exposure was defined by the 10th-percentile cutoff for each work process. Health status was associated with past exposure and predicted the outcome and subsequent exposure in smelters but not in fabricators. In smelters, the Cox MSM hazard ratio comparing those always exposed above the cutoff with those always exposed below the cutoff was 1.98 (95% confidence interval: 1.18, 3.32). In fabricators, the hazard ratio from a traditional Cox model was 1.34 (95% confidence interval: 0.98, 1.83). Results suggest that occupational PM2.5 exposure increases the risk of incident ischemic heart disease in workers in both aluminum smelting and fabrication facilities.


Assuntos
Alumínio/análise , Metalurgia/estatística & dados numéricos , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/epidemiologia , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Adulto , Alumínio/efeitos adversos , Estudos de Coortes , Intervalos de Confiança , Feminino , Seguimentos , Efeito do Trabalhador Sadio , Humanos , Incidência , Masculino , Modelos Estatísticos , Modelos Estruturais , Material Particulado/efeitos adversos , Material Particulado/análise , Modelos de Riscos Proporcionais , Estados Unidos/epidemiologia
20.
Environ Pollut (Tor) ; 3(4): 79-88, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26478760

RESUMO

As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 µm in smelters vs. 1.31 µm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...