Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Methods Mol Biol ; 2351: 165-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382189


Targeted chromatin capture (T2C) is a 3C-based method and is used to study the 3D chromatin organization, interactomes and structural changes associated with gene regulation, progression through the cell cycle, and cell survival and development. Low input targeted chromatin capture (low-T2C) is an optimized version of the T2C protocol for low numbers of cells. Here, we describe the protocol for low-T2C, including all experimental steps and bioinformatics tools in detail.

Montagem e Desmontagem da Cromatina , Cromatina/genética , Biologia Computacional/métodos , Cromatina/química , Cromatina/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Biblioteca Gênica , Genômica/métodos , Reprodutibilidade dos Testes
Hum Mol Genet ; 29(15): 2535-2550, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32628253


The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat-Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2's gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.

J Med Genet ; 57(6): 361-370, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31857429


Most of the human genome has a regulatory function in gene expression. The technological progress made in recent years permitted the revision of old and discovery of new mutations outside of the protein-coding regions that do affect human limb morphology. Steadily increasing discovery rate of such mutations suggests that until now the largely neglected part of the genome rises to its well-deserved prominence. In this review, we describe the recent technological advances permitting this unprecedented advance in identifying non-coding mutations. We especially focus on the mutations in cis-regulatory elements such as enhancers, and trans-regulatory elements such as miRNA and long non-coding RNA, linked to hereditary or inborn limb defects. We also discuss the role of chromatin organisation and enhancer-promoter interactions in the aetiology of limb malformations.

Deformidades Congênitas dos Membros/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Humanos , Deformidades Congênitas dos Membros/patologia
Electrophoresis ; 36(7-8): 1051-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639850


Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli.

Bacillus cereus/isolamento & purificação , Bacillus cereus/patogenicidade , Eletroforese em Gel de Campo Pulsado/métodos , Contaminação de Alimentos/análise , Bacillus cereus/genética , Bacillus cereus/metabolismo , Depsipeptídeos/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Vômito/microbiologia