Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Am J Hum Genet ; 108(4): 696-708, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33743207

RESUMO

The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.

2.
Bioinformatics ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300982

RESUMO

MOTIVATION: When rare missense variants are clinically interpreted as to their pathogenicity, most are classified as variant(s) of uncertain significance (VUS). Although functional assays can provide strong evidence for variant classification, such results are generally unavailable. Multiplexed assays of variant effect can generate experimental 'variant effect maps' that score nearly all possible missense variants in selected protein targets for their impact on protein function. However, these efforts have not always prioritized proteins for which variant effect maps would have the greatest impact on clinical variant interpretation. RESULTS: Here we mined databases of clinically interpreted variants and applied three strategies, each building on the previous, to prioritize genes for systematic functional testing of missense variation. The strategies ranked genes 1) by the number of unique missense VUS that had been reported to ClinVar; 2) by movability- and reappearance-weighted impact scores, to give extra weight to reappearing, movable VUS; and 3) by difficulty-adjusted impact scores, to account for the more resource-intensive nature of generating variant effect maps for longer genes. Our results could be used to guide systematic functional testing of missense variation towards greater impact on clinical variant interpretation. AVAILABILITY: Source code available at: https://github.com/rothlab/mave-gene-prioritization. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
JAMA Netw Open ; 3(10): e2019452, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026450

RESUMO

Importance: Both germline genetic testing and tumor DNA sequencing are increasingly used in cancer care. The indications for testing and utility of these 2 tests differ, and guidelines recommend that germline analysis follow tumor sequencing in certain patients to determine whether particular variants are of somatic or germline origin. Broad clinical experience with such follow-up testing has not yet been thoroughly described. Objective: To examine the yield and utility of germline testing following tumor DNA sequencing in a large, diverse patient population. Design, Setting, and Participants: A retrospective cohort study examined germline testing through a laboratory supporting multiple academic and community clinics. Participants included 2023 patients with cancer who received germline testing and previously underwent tumor DNA sequencing. These patients received germline testing between January 5, 2015, and January 31, 2020, although most (81% of patients) received testing between January 2, 2018, and January 31, 2020. Main Outcomes and Measures: The prevalence of pathogenic germline variants (PGVs) was calculated by gene, cancer type, and age at diagnosis. Potential actionability of these findings was determined based on current management guidelines, precision therapy labels, and clinical trial eligibility criteria. Patient records were reviewed to determine whether germline follow-up testing would have been recommended by current guidelines. Results: Among 2023 eligible patients, 1085 were female (53.6%), and the median age at cancer diagnosis was 56 (range, 0-92) years. Pathogenic germline variants were detected in 617 patients (30.5%; 95% CI, 28.5%-32.6%) and were prevalent across patient ages (1-85 years) and cancer types, including cancers known to be strongly associated with germline variance (eg, breast, colorectal) as well as others (eg, renal, lung, and bladder). Many patients (78%-82%) with PGVs met criteria for germline follow-up testing, and 8.1% of PGVs were missed by tumor sequencing. Among those with germline-positive findings, 69 patients (11.2%) had PGVs identified only after presenting with a second primary cancer that possibly could have been detected earlier or prevented given current gene-specific surveillance and risk-reduction recommendations. Conclusions and Relevance: The findings of this study suggest that germline analysis following tumor sequencing often produces findings that may impact patient care by influencing systemic therapy choices, surgical decisions, additional cancer screening, and genetic counseling in families. Current guidelines and tumor testing approaches appear to capture many, but not all, of these germline findings, reinforcing the utility of both expanded germline follow-up testing as well as germline analysis independent of tumor sequencing in appropriate patients.

5.
JAMA Oncol ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126242

RESUMO

Importance: Hereditary factors play a key role in the risk of developing several cancers. Identification of a germline predisposition can have important implications for treatment decisions, risk-reducing interventions, cancer screening, and germline testing. Objective: To examine the prevalence of pathogenic germline variants (PGVs) in patients with cancer using a universal testing approach compared with targeted testing based on clinical guidelines and the uptake of cascade family variant testing (FVT). Design, Setting, and Participants: This prospective, multicenter cohort study assessed germline genetic alterations among patients with solid tumor cancer receiving care at Mayo Clinic cancer centers and a community practice between April 1, 2018, and March 31, 2020. Patients were not selected based on cancer type, disease stage, family history of cancer, ethnicity, or age. Exposures: Germline sequencing using a greater than 80-gene next-generation sequencing platform. Main Outcomes and Measures: Proportion of PGVs detected with a universal strategy compared with a guideline-directed approach and uptake of cascade FVT in families. Results: A total of 2984 patients (mean [SD] age, 61.4 [12.2] years; 1582 [53.0%] male) were studied. Pathogenic germline variants were found in 397 patients (13.3%), including 282 moderate- and high-penetrance cancer susceptibility genes. Variants of uncertain significance were found in 1415 patients (47.4%). A total of 192 patients (6.4%) had incremental clinically actionable findings that would not have been detected by phenotype or family history-based testing criteria. Of those with a high-penetrance PGV, 42 patients (28.2%) had modifications in their treatment based on the finding. Only younger age of diagnosis was associated with presence of PGV. Only 70 patients (17.6%) with PGVs had family members undergoing no-cost cascade FVT. Conclusions and Relevance: This prospective, multicenter cohort study found that universal multigene panel testing among patients with solid tumor cancer was associated with an increased detection of heritable variants over the predicted yield of targeted testing based on guidelines. Nearly 30% of patients with high-penetrance variants had modifications in their treatment. Uptake of cascade FVT was low despite being offered at no cost.

7.
Int J Neonatal Screen ; 6(2)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32802992

RESUMO

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive disorder of ß-oxidation caused by pathogenic variants in the ACADS gene. Analyte testing for SCADD in blood and urine, including newborn screening (NBS) using tandem mass spectrometry (MS/MS) on dried blood spots (DBSs), is complicated by the presence of two relatively common ACADS variants (c.625G>A and c.511C>T). Individuals homozygous for these variants or compound heterozygous do not have clinical disease but do have reduced short-chain acyl-CoA dehydrogenase (SCAD) activity, resulting in elevated blood and urine metabolites. As part of a larger study of the potential role of exome sequencing in NBS in California, we reviewed ACADS sequence and MS/MS data from DBSs from a cohort of 74 patients identified to have SCADD. Of this cohort, approximately 60% had one or more of the common variants and did not have the two rare variants, and thus would need no further testing. Retrospective analysis of ethylmalonic acid, glutaric acid, 2-hydroxyglutaric acid, 3-hydroxyglutaric acid, and methylsuccinic acid demonstrated that second-tier testing applied before the release of the newborn screening result could reduce referrals by over 50% and improve the positive predictive value for SCADD to above 75%.

8.
Nat Med ; 26(9): 1392-1397, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778825

RESUMO

Public health newborn screening (NBS) programs provide population-scale ascertainment of rare, treatable conditions that require urgent intervention. Tandem mass spectrometry (MS/MS) is currently used to screen newborns for a panel of rare inborn errors of metabolism (IEMs)1-4. The NBSeq project evaluated whole-exome sequencing (WES) as an innovative methodology for NBS. We obtained archived residual dried blood spots and data for nearly all IEM cases from the 4.5 million infants born in California between mid-2005 and 2013 and from some infants who screened positive by MS/MS, but were unaffected upon follow-up testing. WES had an overall sensitivity of 88% and specificity of 98.4%, compared to 99.0% and 99.8%, respectively for MS/MS, although effectiveness varied among individual IEMs. Thus, WES alone was insufficiently sensitive or specific to be a primary screen for most NBS IEMs. However, as a secondary test for infants with abnormal MS/MS screens, WES could reduce false-positive results, facilitate timely case resolution and in some instances even suggest more appropriate or specific diagnosis than that initially obtained. This study represents the largest, to date, sequencing effort of an entire population of IEM-affected cases, allowing unbiased assessment of current capabilities of WES as a tool for population screening.


Assuntos
Exoma/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Triagem Neonatal/métodos , Sequenciamento Completo do Exoma/métodos , Testes Genéticos , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/epidemiologia , Espectrometria de Massas em Tandem
9.
Am J Hum Genet ; 107(1): 3-14, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619490

RESUMO

Secondary genomic findings are increasingly being returned to individuals as opportunistic screening results. A secondary finding offers the chance to identify and mitigate disease that may otherwise be unrecognized in an individual. As a form of screening, secondary findings must be considered differently from sequencing results in a diagnostic setting. For these reasons, clinicians should employ an evaluation and long-term management strategy that accounts for both the increased disease risk associated with a secondary finding and the lower positive predictive value of a screening result compared to an indication-based testing result. Here we describe an approach to the clinical evaluation and management of an individual who presents with a secondary finding. This approach enumerates five domains of evaluation-(1) medical history, (2) physical exam, (3) family history, (4) diagnostic phenotypic testing, and (5) variant correlation-through which a clinician can distinguish a molecular finding from a clinicomolecular diagnosis of genomic disease. With this framework, both geneticists and non-geneticist clinicians can optimize their ability to detect and mitigate genomic disease while avoiding the pitfalls of overdiagnosis. Our goal with this approach is to help clinicians translate secondary findings into meaningful recognition, treatment, and prevention of disease.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/prevenção & controle , Genômica/métodos , Humanos , Anamnese
10.
Neurol Genet ; 6(2): e412, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337338

RESUMO

Objective: Molecular genetic testing for hereditary neuromuscular disorders is increasingly used to identify disease subtypes, determine prevalence, and inform management and prognosis, and although many small disease-specific studies have demonstrated the utility of genetic testing, comprehensive data sets are better positioned to assess the complexity of genetic analysis. Methods: Using high depth-of-coverage next-generation sequencing (NGS) with simultaneous detection of sequence variants and copy number variants (CNVs), we tested 25,356 unrelated individuals for subsets of 266 genes. Results: A definitive molecular diagnosis was obtained in 20% of this cohort, with yields ranging from 4% among individuals with congenital myasthenic syndrome to 33% among those with a muscular dystrophy. CNVs accounted for as much as 39% of all clinically significant variants, with 10% of them occurring as rare, private pathogenic variants. Multigene testing successfully addressed differential diagnoses in at least 6% of individuals with positive results. Even for classic disorders like Duchenne muscular dystrophy, at least 49% of clinically significant results were identified through gene panels intended for differential diagnoses rather than through single-gene analysis. Variants of uncertain significance (VUS) were observed in 53% of individuals. Only 0.7% of these variants were later reclassified as clinically significant, most commonly in RYR1, GDAP1, SPAST, and MFN2, providing insight into the types of evidence that support VUS resolution and informing expectations of reclassification rates. Conclusions: These data provide guidance for clinicians using genetic testing to diagnose neuromuscular disorders and represent one of the largest studies demonstrating the utility of NGS-based testing for these disorders.

11.
Epilepsia Open ; 4(3): 397-408, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31440721

RESUMO

Objective: Molecular genetic etiologies in epilepsy have become better understood in recent years, creating important opportunities for precision medicine. Building on these advances, detailed studies of the complexities and outcomes of genetic testing for epilepsy can provide useful insights that inform and refine diagnostic approaches and illuminate the potential for precision medicine in epilepsy. Methods: We used a multi-gene next-generation sequencing (NGS) panel with simultaneous sequence and exonic copy number variant detection to investigate up to 183 epilepsy-related genes in 9769 individuals. Clinical variant interpretation was performed using a semi-quantitative scoring system based on existing professional practice guidelines. Results: Molecular genetic testing provided a diagnosis in 14.9%-24.4% of individuals with epilepsy, depending on the NGS panel used. More than half of these diagnoses were in children younger than 5 years. Notably, the testing had possible precision medicine implications in 33% of individuals who received definitive diagnostic results. Only 30 genes provided 80% of molecular diagnoses. While most clinically significant findings were single-nucleotide variants, ~15% were other types that are often challenging to detect with traditional methods. In addition to clinically significant variants, there were many others that initially had uncertain significance; reclassification of 1612 such variants with parental testing or other evidence contributed to 18.5% of diagnostic results overall and 6.1% of results with precision medicine implications. Significance: Using an NGS gene panel with key high-yield genes and robust analytic sensitivity as a first-tier test early in the diagnostic process, especially for children younger than 5 years, can possibly enable precision medicine approaches in a significant number of individuals with epilepsy.

14.
BMJ Case Rep ; 12(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126930

RESUMO

The CACNA1H gene encodes the pore-forming α1 subunit of the T-type voltage-dependent calcium channel CaV3.2, expressed abundantly in the adrenal cortex. Mutations in CACNA1H are associated with various forms of primary aldosteronism (PA), including familial hyperaldosteronism type 4 (FH4). We describe a patient with refractory hypokalaemia and elevated aldosterone secretion independent of renin activity. Despite the absence of overt hypertension in this patient, the laboratory evaluation was consistent with a diagnosis of PA. Whole-exome sequencing revealed a de novo missense variant, R890H, in the voltage sensing domain of CACNA1H Expression of the variant channel in cells resulted in decreased whole-cell current, consistent with a loss-of-function. We hypothesise this variant is the genetic cause of pathological aldosterone secretion in this patient, and thereby expand the current understanding of the genetic basis of FH4.


Assuntos
Canais de Cálcio Tipo T/genética , Síndrome de Ehlers-Danlos , Predisposição Genética para Doença , Hiperaldosteronismo/diagnóstico , Hipopotassemia/etiologia , Adulto , Diagnóstico Diferencial , Feminino , Células Germinativas , Humanos , Hiperaldosteronismo/sangue , Hiperaldosteronismo/complicações , Hiperaldosteronismo/genética
15.
J Parkinsons Dis ; 9(2): 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127733
16.
Am J Neurodegener Dis ; 8(1): 1-15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906671

RESUMO

Parkinson disease (PD) is a neurodegenerative disease with motor as well as non-motor symptoms, including gastrointestinal dysfunction. In humans, these precede the motor symptoms by decades. Previously developed and characterized transgenic mice expressing the mutant human α-synuclein gene (SNCA) (either A53T or A30P), but not the endogenous mouse Snca, serve as models for familial PD. These animals demonstrate both robust abnormalities in enteric nervous system (ENS) function as well as synuclein-immunoreactive aggregates in ENS ganglia by 3 months of age, recapitulating early gastrointestinal abnormalities seen before the gait impairment characteristics of human and murine PD. Posiphen is a translational inhibitor of α-synuclein that targets the 5' untranslated region (UTR) of SNCA mRNA and could be a potential drug for the treatment of PD. However, its efficacy in ameliorating symptoms of PD has not yet been evaluated. Here, we used these transgenic mouse models to investigate the efficacy of Posiphen in reversing the gastrointestinal dysfunction. We show that Posiphen normalizes the colonic motility of both transgenic mouse models, although it did not affect the Whole Gut Transit Time (WGTT). Pharmacokinetics studies revealed that Posiphen is more abundant in the brain than in blood, in agreement with its lipophilicity, and the main metabolite is N8-NorPosiphen, a molecule with similar properties as Posiphen. The brain Posiphen levels necessary to effect optimal function were calculated and compared with efficacious brain levels from previous studies, showing that a 2-3 mM concentration of Posiphen and metabolites is sufficient for functional efficacy. Finally, 10 mg/kg Posiphen reduced α-synuclein levels in the gut of hSNCAA53T mice treated for twenty-one weeks, while 50 and 65 mg/kg Posiphen reduced α-synuclein levels in the brain of hSNCAA53T mice treated for twenty-one days. In conclusion, this is the first study showing the preclinical efficacy of Posiphen in normalizing the colonic motility in mouse models of gastrointestinal dysfunction in early PD. This result is in agreement with the ability of Posiphen to reach the nervous system, and its mechanism of action, the translational inhibition of α-synuclein expression. These significant findings support further development of Posiphen as a drug for the treatment of PD.

17.
JAMA Oncol ; 5(4): 523-528, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730552

RESUMO

Importance: Prostate cancer is the third leading cause of cancer-related death in men in the United States. Although serious, most of these diagnoses are not terminal. Inherited risk for prostate cancer is associated with aggressive disease and poorer outcomes, indicating a critical need for increased genetic screening to identify disease-causing variants that can pinpoint individuals at increased risk for metastatic castration-resistant prostate cancer. Objective: To identify positive (pathogenic, likely pathogenic, and increased risk) germline variants in a large prostate cancer cohort and to evaluate the usefulness of current practice guidelines in recognizing individuals at increased risk for prostate cancer who would benefit from diagnostic genetic testing. Design, Setting, and Participants: Cross-sectional study of data from 3607 men with a personal history of prostate cancer who underwent germline genetic testing between 2013 and 2018 and were unselected for family history, stage of disease, or age at diagnosis. Referral-based testing was performed at a Clinical Laboratory Improvement Amendments/College of American Pathologists-certified diagnostic laboratory. All analysis took place between February 2017 and August 2018. Main Outcomes and Measures: The frequency and distribution of positive germline variants, and the percentage of individuals with prostate cancer who met National Comprehensive Cancer Network (NCCN) guidelines for germline genetic testing. Results: Of 3607 men (mean [SD] age at testing, 67 [9.51] years; mean age at diagnosis, 60 [9.05] years) with a personal diagnosis of prostate cancer who were referred for genetic testing, 620 (17.2%) had positive germline variants, of which only 30.7% were variants in BRCA1/2. Positive variants in HOXB13, a gene associated only with prostate cancer risk, were identified in 30 patients (4.5%). DNA mismatch repair variants with substantial known therapeutic implications were detected in 1.74% of variants in the total population tested. Examination of self-reported family histories indicated that 229 individuals (37%) with positive variants in this cohort would not have been approved for genetic testing using the NCCN genetic/familial breast and ovarian guidelines for patients with prostate cancer. Conclusions and Relevance: Current NCCN guidelines and Gleason scores cannot reliably stratify patients with prostate cancer for the presence or absence of pathogenic germline variants. Most positive genetic test results identified in this study have important management implications for patients and their families, which underscores the need to revisit current guidelines.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias da Próstata/genética , Idoso , Estudos Transversais , Testes Genéticos , Guias como Assunto , Humanos , Masculino , Pessoa de Meia-Idade
18.
J Mol Diagn ; 21(2): 318-329, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610921

RESUMO

Orthogonal confirmation of next-generation sequencing (NGS)-detected germline variants is standard practice, although published studies have suggested that confirmation of the highest-quality calls may not always be necessary. The key question is how laboratories can establish criteria that consistently identify those NGS calls that require confirmation. Most prior studies addressing this question have had limitations: they have been generally of small scale, omitted statistical justification, and explored limited aspects of underlying data. The rigorous definition of criteria that separate high-accuracy NGS calls from those that may or may not be true remains a crucial issue. We analyzed five reference samples and over 80,000 patient specimens from two laboratories. Quality metrics were examined for approximately 200,000 NGS calls with orthogonal data, including 1662 false positives. A classification algorithm used these data to identify a battery of criteria that flag 100% of false positives as requiring confirmation (CI lower bound, 98.5% to 99.8%, depending on variant type) while minimizing the number of flagged true positives. These criteria identify false positives that the previously published criteria miss. Sampling analysis showed that smaller data sets resulted in less effective criteria. Our methodology for determining test- and laboratory-specific criteria can be generalized into a practical approach that can be used by laboratories to reduce the cost and time burdens of confirmation without affecting clinical accuracy.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Variação Genética/genética , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...