Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(14): 4003-4009, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31264874

RESUMO

Photolytic aging has been proposed as a major mass loss mechanism for atmospheric secondary organic aerosol (SOA). However, estimated mass loss rates vary by orders of magnitude, and their impacts on modeled SOA loadings and properties are highly uncertain. In this study, photolysis rates and composition changes of α-pinene SOA are analyzed in situ over multiple days in an environmental chamber. After an initial exponential decay (τ ∼ 22 h), the mass loss rate slows dramatically, with more than ∼70-90% of the SOA particulate mass undergoing an essentially negligible photolytic degradation. Scaled to ambient conditions, SOA undergoes rapid photolysis over only its first day in the atmosphere; beyond this, the remaining SOA is photo-recalcitrant, and photolysis ceases to be a major sink compared to wet deposition time scales. Thus, extrapolation of the initial photolysis loss rate to the entire aerosol mass may significantly overestimate the role of photolysis in the removal of atmospheric SOA.

2.
Environ Sci Technol ; 53(13): 7604-7612, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31184875

RESUMO

Characterizing the chemical composition of organic aerosols can elucidate aging mechanisms as well as the chemical and physical properties of the aerosol. However, the high chemical complexity and often low atmospheric abundance present a difficult analytical challenge. Milligrams or more of material may be needed for speciated spectroscopic analysis. In contrast, mass spectrometry provides a very sensitive platform but limited structural information. Here, we combine the strengths of mass spectrometry and infrared (IR) action spectroscopy to generate characteristic IR spectra of individual, mass-isolated ion populations. Soft ionization combined with in situ infrared ion spectroscopy, using the tunable free-electron laser FELIX, provides detailed information on molecular structures and functional groups. We apply this technique, along with quantum mechanical modeling, to characterize organic molecules in secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. Spectral overlap with a standard is used to identify cis-pinonic acid. We also demonstrate the characterization of isomers for multiple SOA products using both quantum mechanical computations and analyses of fragment ion spectra. These results demonstrate the detailed structural information on isolated ions obtained by combining mass spectrometry with fingerprint IR spectroscopy.


Assuntos
Poluentes Atmosféricos , Monoterpenos , Aerossóis , Monoterpenos Bicíclicos , Íons , Espectrometria de Massas
3.
Faraday Discuss ; 200: 165-194, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574555

RESUMO

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

4.
Environ Sci Technol ; 50(10): 5172-80, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27088454

RESUMO

Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.


Assuntos
Tamanho da Partícula , Molhabilidade , Aerossóis/química , Carbono , Microscopia Eletrônica de Varredura
5.
Environ Sci Technol ; 49(8): 4995-5002, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25850933

RESUMO

Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH's above the deliquescence point and that the majority of the organic component was located in the outer phase. The outer phase composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 70:30% organic to inorganic mix in the outer phase. These two chemical imaging techniques are well suited for in situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.


Assuntos
Aerossóis/química , Modelos Químicos , Sulfato de Amônio/química , Cicloexenos/química , Limoneno , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/química , Transição de Fase , Polietilenoglicóis/química , Terpenos/química
6.
J Phys Chem A ; 119(19): 4498-508, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25386912

RESUMO

Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry.


Assuntos
Aerossóis/química , Atmosfera/química , Carbono/química , Cloretos/química , Nitratos/química , Monoterpenos Bicíclicos , Cicloexenos/química , Difusão , Gases/química , Vidro/química , Umidade , Limoneno , Monoterpenos/química , Terpenos/química , Fatores de Tempo , Temperatura de Transição , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA