Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(15): 8067-8076, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239075

RESUMO

Understanding the formation of nano-interfaces between metallic clusters and nanoscale metal-oxides is an important step towards using such systems for catalytic applications. Thus, in this work, we employ density functional theory calculations to study the TMn-(ZrO2)13 interactions, for TM = Fe, Co, Ni, or Cu, and n = 1, 4, and 8. We found a general trend for adsorption and interaction energies (ad/int) for all cluster sizes, with . In terms of size effects, both adsorption and interaction (frozen adsorbed structures) energies become stronger with increasing cluster sizes due to the increase in the number of TM atoms in direct contact with the (ZrO2)13 nanocluster. The structural and electronic properties change for each TMn/(ZrO2)13 system, indicating that these properties could be tuned through variables like the TM species, cluster size and morphology (isomers with different structures). The results also indicate that, from the studied TMs, Ni (Cu) should form the smallest (largest) clusters when supported on the (ZrO2)13 nanoclusters. These and other results discussed here help understand the formation of the nano-interface in the TM-ZrO2 systems, which can be useful in the development of new catalysts.

2.
Phys Chem Chem Phys ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293626

RESUMO

Adsorption is a crucial preliminary step for the conversion of CO2 into higher-value chemicals, nonetheless, the atomistic understanding of how substrate particle size affects this step is still incomplete. In this study, we employed density functional theory to investigate the effects of particle size on the adsorption of model molecules involved in the CO2 transformations (CO2, CO, H2O and H2) on Con, Nin and Cun particles with different sizes (n = 13, 55, 147) and on the respective close-packed surfaces. We found significant size-dependence of the adsorption properties for physisorbed (linear) and chemisorbed (bent) CO2 on the substrates and distinct (symmetric or asymmetric) stretching of the C-O bonds, which can play a crucial role to understand the CO2 dissociation pathways. For CO and H2, some properties showed small oscillations, due to size effects that induced alternation of the adsorption site preference for different particle sizes; for H2O, the adsorption properties were almost independent of particle size. The presence of low-coordinated adsorption sites resulted in a trend for stronger adsorption and greater charge transfer for smaller clusters. Fixing the size-independent factors (e.g., type of metal), our results show that CO2 adsorption on transition-metal clusters is significantly affected by particle size, suggesting that substrate particle size could be a key factor to understand and control the catalytic transformations of CO2.

3.
J Chem Inf Model ; 60(2): 537-545, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31917570

RESUMO

In this work, we report an ab initio investigation based on density functional theory calculations within van der Waals D3 corrections to investigate the adsorption properties and activation of CO2 on transition-metal (TM) 13-atom clusters (TM = Ru, Rh, Pd, Ag), which is a key step for the development of subnano catalysts for the conversion of CO2 to high-value products. From our analyses, which include calculations of several properties and the Spearman correlation analysis, we found that CO2 adopts two distinct structures on the selected TM13 clusters, namely, a bent CO2 configuration in which the OCO angle is about 125 to 150° (chemisorption), which is the lowest energy CO2/TM13 configuration for TM = Ru, Rh, Pd. As in the gas phase, the linear CO2 structure yields the lowest energy for CO2/Ag13 and several higher energy configurations for TM = Ru, Rh, Pd. The bent CO2 (activated) is driven by a chemisorption CO2-TM13 interaction due to the charge transfer from the TM13 clusters toward CO2, while a weak physisorption interaction is obtained for the linear CO2 on the TM13 clusters. Thus, the CO2 activation occurs only in the first case and it is driven by charge transfer from the TM13 clusters to the CO2 molecule (i.e., CO2-δ), which is confirmed by our Bader charge analysis and vibrational frequencies.

4.
J Chem Phys ; 151(21): 214301, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822101

RESUMO

The identification of the most important descriptors that drive the activation CO2 on transition-metal (TM) catalysts is a crucial step toward the conversion of CO2 into value-added chemicals; however, our atomistic understanding is far from satisfactory. Thus, aiming at the potential use of TM clusters in the conversion of CO2, we report density functional theory calculations of CO2, CO, H2O, and H2 adsorption on TM13 clusters (TM = Fe, Co, Ni, and Cu). Among the descriptors to evaluate the activation of the studied molecules, we found that the bond lengths increase, angles decrease, and their energetic variations upon the adsorption are the most important ones. From the structural response in anionic gas-phase molecules, the charge transfer toward CO2 and CO is pointed as relevant in their activation, and our results and analyses suggest that the adsorption on 3d TM13 clusters promote this charge donation process, decreasing in the order Fe13 > Co13 > Ni13 > Cu13. For CO2 and CO on Cu13, the activation was observed for highest energy configurations, indicating that is necessarily an additional driving force to occur the molecular activation on this material. Also, energetic parameters, adsorption energy, and interaction energy indicated that the strength of the adsorption is not necessarily proportional to the activation; it is difficult to point out these parameters as descriptors. Our results also provide interesting insights about steps of the CO2 reduction mechanism within the context of the modified Fischer-Tropsch synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA