Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanotechnology ; 31(14): 145708, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846937

RESUMO

Axial p-n and p-i-n junctions in GaAs0.7P0.3 nanowires are demonstrated and analyzed using electron beam induced current microscopy. Organized self-catalyzed nanowire arrays are grown by molecular beam epitaxy on nanopatterned Si substrates. The nanowires are doped using Be and Si impurities to obtain p- and n-type conductivity, respectively. A method to determine the doping type by analyzing the induced current in the vicinity of a Schottky contact is proposed. It is demonstrated that for the applied growth conditions using Ga as a catalyst, Si doping induces an n-type conductivity contrary to the GaAs self-catalyzed nanowire case, where Si was reported to yield a p-type doping. Active axial nanowire p-n junctions having a homogeneous composition along the axis are synthesized and the carrier concentration and minority carrier diffusion lengths are measured. To the best of our knowledge, this is the first report of axial p-n junctions in self-catalyzed GaAsP nanowires.

2.
Nanotechnology ; 30(29): 294003, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31032812

RESUMO

We report on the detailed composition of ternary GaAsP nanowires (NWs) grown using self-catalyzed vapor-liquid-solid (VLS) growth by molecular beam epitaxy. We evidence the formation of an unintentional shell, which enlarges by vapor-solid growth concurrently to the main VLS-grown core. The NW core and unintentional shell have typically different chemical compositions if no effort is made to adjust the growth conditions. The compositions can be made equal by changing the substrate temperature and the P/As flux ratio in the vapor phase. In all cases, we still observe the existence of a P-rich interface between the GaAsP NW core and the unintentional shell, even if favorable growth conditions are used.

3.
Nano Lett ; 18(2): 701-708, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29257888

RESUMO

The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.

4.
Nano Lett ; 17(11): 6667-6675, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035545

RESUMO

We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 1017 to 1 × 1018 cm-3. These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

5.
Sci Technol Adv Mater ; 17(1): 736-743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933113

RESUMO

We report on a comparative study of the low temperature emission and polarisation properties of InGaN/GaN quantum wells grown on nonpolar ([Formula: see text]) a-plane and ([Formula: see text]) m-plane free-standing bulk GaN substrates where the In content varied from 0.14 to 0.28 in the m-plane series and 0.08 to 0.21 for the a-plane series. The low temperature photoluminescence spectra from both sets of samples are broad with full width at half maximum height increasing from 81 to 330 meV as the In fraction increases. Photoluminescence excitation spectroscopy indicates that the recombination mainly involves strongly localised carriers. At 10 K the degree of linear polarisation of the a-plane samples is much smaller than of the m-plane counterparts and also varies across the spectrum. From polarisation-resolved photoluminescence excitation spectroscopy we measured the energy splitting between the lowest valence sub-bands to lie in the range of 23-54 meV for the a- and m-plane samples in which we could observe distinct exciton features. Thus the thermal occupation of a higher valence sub-band cannot be responsible for the reduction of the degree of linear polarisation at 10 K. Time-resolved spectroscopy indicates that in a-plane samples there is an extra emission component which is at least partly responsible for the reduction in the degree of linear polarisation.

6.
Nano Lett ; 16(8): 4895-902, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414518

RESUMO

Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

7.
Nano Lett ; 16(3): 1917-24, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26840359

RESUMO

The growth of III-III-V axial heterostructures in nanowires via the vapor-liquid-solid method is deemed to be unfavorable because of the high solubility of group III elements in the catalyst droplet. In this work, we study the formation by molecular beam epitaxy of self-catalyzed GaAs nanowires with AlxGa1-xAs insertions. The composition profiles are extracted and analyzed with monolayer resolution using high-angle annular dark-field scanning transmission electron microscopy. We test successfully several growth procedures to sharpen the heterointerfaces. For a given nanowire geometry, prefilling the droplet with Al atoms is shown to be the most efficient way to reduce the width of the GaAs/AlxGa1-xAs interface. Using the thermodynamic data available in the literature, we develop numerical and analytical models of the composition profiles, showing very good agreement with experiments. These models suggest that atomically sharp interfaces are attainable for catalyst droplets of small volumes.

8.
Nano Lett ; 15(9): 6036-41, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26217912

RESUMO

We achieve the self-catalyzed growth of pure GaP nanowires and GaAs1-xPx/GaAs1-yPy nanowire heterostructures by solid-source molecular beam epitaxy. Consecutive segments of nearly pure GaAs and GaP are fabricated by commuting the group V fluxes. We test different flux switching procedures and measure the corresponding interfacial composition profiles with atomic resolution using high-angle annular dark field scanning transmission electron microscopy. Interface abruptness is drastically improved by switching off all the molecular beam fluxes for a short time at the group V commutation. Finally, we demonstrate that the morphology of the growth front can be either flat or truncated, depending on the growth conditions. The method presented here allows for the facile synthesis of high quality GaP/GaAs axial heterostructures directly on Si (111) wafers.

9.
Nanoscale Res Lett ; 6(1): 187, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21711709

RESUMO

The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

10.
Nano Lett ; 8(5): 1544-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18422363

RESUMO

Silicon nanowires (NW) were grown by the vapor-liquid-solid mechanism using gold as the catalyst and silane as the precursor. Gold from the catalyst particle can diffuse over the wire sidewalls, resulting in gold clusters decorating the wire sidewalls. The presence or absence of gold clusters was observed either by high angle annular darkfield scanning transmission electron microscopy images or by scanning electron microscopy. We find that the gold surface diffusion can be controlled by two growth parameters, the silane partial pressure and the growth temperature, and that the wire diameter also affects gold diffusion. Gold clusters are not present on the NW side walls for high silane partial pressure, low temperature, and small NW diameters. The absence or presence of gold on the NW sidewall has an effect on the sidewall morphology. Different models are qualitatively discussed. The main physical effect governing gold diffusion seems to be the adsorption of silane on the NW sidewalls.


Assuntos
Cristalização/métodos , Modelos Químicos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Silanos/química , Silício/química , Adsorção , Simulação por Computador , Difusão , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA