Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 9(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384768

RESUMO

Reactive oxygen and nitrogen species (RONS) cause oxidative damage, which is associated with endothelial dysfunction and cardiovascular disease, but may also contribute to redox signaling. Therefore, their precise detection is important for the evaluation of disease mechanisms. Here, we compared three different methods for the detection of 3-nitrotyrosine (3-NT), a marker of nitro-oxidative stress, in biological samples. Nitrated proteins were generated by incubation with peroxynitrite or 3-morpholino sydnonimine (Sin-1) and subjected to total hydrolysis using pronase, a mixture of different proteases. The 3-NT was then separated by high performance liquid chromatography (HPLC) and quantified by electrochemical detection (ECD, CoulArray) and compared to classical methods, namely enzyme-linked immunosorbent assay (ELISA) and dot blot analysis using specific 3-NT antibodies. Calibration curves for authentic 3-NT (detection limit 10 nM) and a concentration-response pattern for 3-NT obtained from digested nitrated bovine serum albumin (BSA) were highly linear over a wide 3-NT concentration range. Also, ex vivo nitration of protein from heart, isolated mitochondria, and serum/plasma could be quantified using the HPLC/ECD method and was confirmed by LC-MS/MS. Of note, nitro-oxidative damage of mitochondria results in increased superoxide (O2•-) formation rates (measured by dihydroethidium-based HPLC assay), pointing to a self-amplification mechanism of oxidative stress. Based on our ex vivo data, the CoulArray quantification method for 3-NT seems to have some advantages regarding sensitivity and selectivity. Establishing a reliable automated HPLC assay for the routine quantification of 3-NT in biological samples of cell culture, of animal and human origin seems to be more sophisticated than expected.

2.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408480

RESUMO

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by selected examples from the current literature and own data including hypoxia, angiotensin II (AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of redox-based activation of RONS sources via "kindling radicals" and enzyme-specific "redox switches" as well as the interaction with redox-sensitive inflammatory pathways are discussed. Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes and critically assess their contribution to the severity of diabetic complications.

3.
Redox Biol ; : 101506, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32371009

RESUMO

Environmental pollution and non-chemical stressors such as mental stress or traffic noise exposure are increasingly accepted as health risk factors with substantial contribution to chronic noncommunicable diseases (e.g. cardiovascular, metabolic and mental). Whereas the mechanisms of air pollution-mediated adverse health effects are well characterized, the mechanisms of traffic noise exposure are not completely understood, despite convincing clinical and epidemiological evidence for a significant contribution of environmental noise to overall mortality and disability. The initial mechanism of noise-induced cardiovascular, metabolic and mental disease is well defined by the "noise reaction model" and consists of neuronal activation involving the hypothalamic-pituitary-adrenal (HPA) axis as well as the sympathetic nervous system, followed by a classical stress response via cortisol and catecholamines. Stress pathways are initiated by noise-induced annoyance and sleep deprivation/fragmentation. This review highlights the down-stream pathophysiology of noise-induced mental stress, which is based on an induction of inflammation and oxidative stress. We highlight the sources of reactive oxygen species (ROS) involved and the known targets for noise-induced oxidative damage. Part of the review emphasizes noise-triggered uncoupling/dysregulation of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and its central role for vascular dysfunction.

4.
Redox Biol ; : 101515, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32345536

RESUMO

Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidative stress and inflammation in aortic, cardiac and/or cerebral tissues in single exposure models. In mice subjected to both stressors, most of these risk factors showed potentiated adverse changes. We also found that mice exposed to both noise and ATII had increased phagocytic NADPH oxidase (NOX-2)-mediated superoxide formation, immune cell infiltration (monocytes, neutrophils and T cells) in the aortic wall, astrocyte activation in the brain, enhanced cytokine signaling, and subsequent vascular and cerebral oxidative stress. Exaggerated renal stress response was also observed. In summary, our results show an enhanced adverse cardiovascular effect between environmental noise exposure and arterial hypertension, which is mainly triggered by vascular inflammation and oxidative stress. Mechanistically, noise potentiates neuroinflammation and cerebral oxidative stress, which may be a potential link between both risk factors. The results indicate that a combination of classical (arterial hypertension) and novel (noise exposure) risk factors may be deleterious for cardiovascular health.

5.
Free Radic Res ; : 1-13, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32326776

RESUMO

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout (Ogg1-/-) mice.Methods and results: Noise exposure (peak sound levels of 85 and mean sound level of 72 dB(A) applied for 4d) caused oxidative DNA damage (8-oxoguanine) and enhanced NOX-2 expression in C57BL/6 mice with synergistic increases in Ogg1-/- mice (shown by immunohistochemistry). A similar pattern was found for oxidative burst of blood leukocytes and other markers of oxidative stress (4-hydroxynonenal, 3-nitrotyrosine) and inflammation (cyclooxygenase-2). We observed additive impairment of noise exposure and genetic Ogg1 deficiency on endothelium-independent relaxation (nitroglycerine), which may be due to exacerbated oxidative DNA damage leading to leukocyte activation and oxidative aldehyde dehydrogenase inhibition.Conclusions: The finding that chronic noise exposure causes oxidative DNA damage in mice is worrisome since these potential mutagenic lesions could contribute to cancer progression. Human field studies have to demonstrate whether oxidative DNA damage is also found in urban populations with high levels of noise exposure as recently shown for workers with high occupational noise exposure.

6.
Annu Rev Public Health ; 41: 309-328, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31922930

RESUMO

Exposure to traffic noise is associated with stress and sleep disturbances. The World Health Organization (WHO) recently concluded that road traffic noise increases the risk for ischemic heart disease and potentially other cardiometabolic diseases, including stroke, obesity, and diabetes. The WHO report focused on whole-day noise exposure, but new epidemiological and translational field noise studies indicate that nighttime noise, in particular,is an important risk factor for cardiovascular disease (CVD) through increased levels of stress hormones and vascular oxidative stress, leading to endothelial dysfunction and subsequent development of various CVDs. Novel experimental studies found noise to be associated with oxidative stress-induced vascular and brain damage, mediated by activation of the NADPH oxidase, uncoupling of endothelial and neuronal nitric oxide synthase, and vascular/brain infiltration with inflammatory cells. Noise-induced pathophysiology was more pronounced in response to nighttime as compared with daytime noise. This review focuses on the consequences of nighttime noise.

7.
Arterioscler Thromb Vasc Biol ; 40(1): 145-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31747801

RESUMO

OBJECTIVE: Cardiovascular outcome trials demonstrated that GLP-1 (glucagon-like peptide-1) analogs including liraglutide reduce the risk of cardiovascular events in type 2 diabetes mellitus. Whether GLP-1 analogs reduce the risk for atherosclerosis independent of glycemic control is challenging to elucidate as the GLP-1R (GLP-1 receptor) is expressed on different cell types, including endothelial and immune cells. Approach and Results: Here, we reveal the cardio- and vasoprotective mechanism of the GLP-1 analog liraglutide at the cellular level in a murine, nondiabetic model of arterial hypertension. Wild-type (C57BL/6J), global (Glp1r-/-), as well as endothelial (Glp1rflox/floxxCdh5cre) and myeloid cell-specific knockout mice (Glp1rflox/floxxLysMcre) of the GLP-1R were studied, and arterial hypertension was induced by angiotensin II. Liraglutide treatment normalized blood pressure, cardiac hypertrophy, vascular fibrosis, endothelial dysfunction, oxidative stress, and vascular inflammation in a GLP-1R-dependent manner. Mechanistically, liraglutide reduced leukocyte rolling on the endothelium and infiltration of myeloid Ly6G-Ly6C+ and Ly6G+Ly6C+ cells into the vascular wall. As a consequence, liraglutide prevented vascular oxidative stress, reduced S-glutathionylation as a marker of eNOS (endothelial NO synthase) uncoupling, and increased NO bioavailability. Importantly, all of these beneficial cardiovascular effects of liraglutide persisted in myeloid cell GLP-1R-deficient (Glp1rflox/floxxLysMcre) mice but were abolished in global (Glp1r-/-) and endothelial cell-specific (Glp1rflox/floxxCdh5cre) GLP-1R knockout mice. CONCLUSIONS: GLP-1R activation attenuates cardiovascular complications of arterial hypertension by reduction of vascular inflammation through selective actions requiring the endothelial but not the myeloid cell GLP-1R.

8.
Oxid Med Cell Longev ; 2019: 5181429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781340

RESUMO

Objective: Atherogenic lipoproteins may impair vascular reactivity consecutively causing tissue damage in multiple organs via abnormal perfusion and excessive reactive oxygen species generation. We tested the hypothesis that chronic hypercholesterolemia causes endothelial dysfunction and cell loss in the retina. Methods: Twelve-month-old apolipoprotein E-deficient (ApoE-/-) mice and age-matched wild-type controls were used in this study (n = 8 per genotype for each experiment). Intraocular pressure, blood pressure, and ocular perfusion pressure were determined. Retinal arteriole responses were studied in vitro, and reactive oxygen and nitrogen species were quantified in the retinal and optic nerve cryosections. The expression of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and the NADPH oxidase isoforms, NOX1, NOX2, and NOX4, were determined in retinal cryosections by immunofluorescence microscopy. Pro- and antioxidant redox genes were quantified in retinal explants by PCR. Moreover, cell number in the retinal ganglion cell layer and axon number in the optic nerve was calculated. Results: Responses to the endothelium-dependent vasodilator, acetylcholine, were markedly impaired in retinal arterioles of ApoE-/- mice (P < 0.01). LOX-1 (P = 0.0007) and NOX2 (P = 0.0027) expressions as well as levels of reactive oxygen species (P = 0.0022) were increased in blood vessels but not in other retinal structures. In contrast, reactive nitrogen species were barely detectable in both mouse genotypes. Messenger RNA for HIF-1α, VEGF-A, NOX1, and NOX2, but also for various antioxidant redox genes was elevated in the retina of ApoE-/- mice. Total cell number in the retinal ganglion cell layer did not differ between ApoE-/- and wild-type mice (P = 0.2171). Also, axon number in the optic nerve did not differ between ApoE-/- and wild-type mice (P = 0.6435). Conclusion: Apolipoprotein E deficiency induces oxidative stress and endothelial dysfunction in retinal arterioles, which may trigger hypoxia in the retinal tissue. Oxidative stress in nonvascular retinal tissue appears to be prevented by the upregulation of antioxidant redox enzymes, resulting in neuron preservation.

9.
Eur Heart J ; 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31715629

RESUMO

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.

10.
Antioxidants (Basel) ; 8(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661873

RESUMO

BACKGROUND: Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) are generated within the organism. Whereas physiological formation rates confer redox regulation of essential cellular functions and provide the basis for adaptive stress responses, their excessive formation contributes to impaired cellular function or even cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, quantification of RONS formation and knowledge of their tissue/cell/compartment-specific distribution is of great biological and clinical importance. METHODS: Here, we used a high-performance/pressure liquid chromatography (HPLC) assay to quantify the superoxide-specific oxidation product of the mitochondria-targeted fluorescence dye triphenylphosphonium-linked hydroethidium (mitoSOX) in biochemical systems and three animal models with established oxidative stress. Type 1 diabetes (single injection of streptozotocin), hypertension (infusion of angiotensin-II for 7 days) and nitrate tolerance (infusion of nitroglycerin for 4 days) was induced in male Wistar rats. RESULTS: The usefulness of mitoSOX/HPLC for quantification of mitochondrial superoxide was confirmed by xanthine oxidase activity as well as isolated stimulated rat heart mitochondria in the presence or absence of superoxide scavengers. Vascular function was assessed by isometric tension methodology and was impaired in the rat models of oxidative stress. Vascular dysfunction correlated with increased mitoSOX oxidation but also classical RONS detection assays as well as typical markers of oxidative stress. CONCLUSION: mitoSOX/HPLC represents a valid method for detection of mitochondrial superoxide formation in tissues of different animal disease models and correlates well with functional parameters and other markers of oxidative stress.

11.
Acta Biochim Pol ; 66(3): 269-283, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509369

RESUMO

There is general consensus that environmental pollution and non-chemical stressors contribute to the incidence and prevalence of chronic noncommunicable disease (e.g. cardiovascular, metabolic and mental). Clinical and epidemiological studies support that air pollution and traffic noise are associated with a higher risk for cardiovascular disease and significantly contribute to overall mortality. In this respect, the "exposome" provides a comprehensive description of lifelong exposure history. A recent publication using an updated global exposure-mortality model found that the global all-cause mortality rate attributable to ambient air pollution by PM2.5 and O3 was 8.79 (95% CI 7.11-10.41) million in 2015 - much higher than previously calculated. For Europe this corresponds to 790,000 premature deaths due to ambient air pollution. Various large scale studies and expert commissions have identified air pollution as the leading health risk factor in the physical environment, followed by water and soil pollution with heavy metals, pesticides, other chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors: mental stress, light exposure, climatic changes and traffic noise. Especially for traffic noise-related health effects there are numerous clinical and epidemiological studies reporting significant impact on cardiovascular disease. We here provide an in-depth review on the health effects of the external exposome, with emphasis on air pollution and traffic noise and to a lesser degree mental stress and other environmental pollutants. In addition, we summarize our previously published experimental research investigating effects of aircraft noise exposure in mice and provide mechanistic insights on how noise contributes to noncommunicable disease.


Assuntos
Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Metais Pesados/efeitos adversos , Ruído/efeitos adversos , Doenças não Transmissíveis/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aeronaves , Animais , Doenças Cardiovasculares/mortalidade , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Pessoa de Meia-Idade , Doenças não Transmissíveis/mortalidade , Fatores de Risco , Estresse Psicológico/complicações , Adulto Jovem
12.
Chem Biol Interact ; 313: 108834, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545955

RESUMO

The anthracycline doxorubicin (DOX) is widely used in cancer therapy with the limitation of cardiotoxicity leading to the development of congestive heart failure. DOX-induced oxidative stress and changes of the phosphoproteome as well as epigenome were described but the exact mechanisms of the adverse long-term effects are still elusive. Here, we tested the impact of DOX treatment on cell death, oxidative stress parameters and expression profiles of proteins involved in epigenetic pathways in a cardiomyocyte cell culture model. Markers of oxidative stress, apoptosis and expression of proteins involved in epigenetic processes were assessed by immunoblotting in cultured rat myoblasts (H9c2) upon treatment with DOX (1 or 5 µM for 24 or 48 h) in adherent viable and detached apoptotic cells. The apoptosis markers cleaved caspase-3 and fractin as well as oxidative stress markers 3-nitrotyrosine and malondialdehyde were dose-dependently increased by DOX treatment. Histone deacetylases (SIRT1 and HDAC2), histone lysine demethylases (KDM3A and LSD1) and histone lysine methyltransferases (SET7 and SMYD1) were significantly regulated by DOX treatment with generation of cleaved protein fragments and posttranslational modifications. Overall, we found significant decrease in histone 3 acetylation in DOX-treated cells. DOX treatment of cultured cardiomyocyte precursor cells causes severe cell death by apoptosis associated with cellular oxidative stress. In addition, significant regulation of proteins involved in epigenetic processes and changes in global histone 3 acetylation were observed. However, the significance and clinical impact of these changes remain elusive.


Assuntos
Doxorrubicina/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Cardiotoxicidade/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos
13.
Oxid Med Cell Longev ; 2019: 6721531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396305

RESUMO

Aims: The neutrophil recruiting cytokine Interleukin-17A (IL-17A) is a key component in vascular dysfunction and arterial hypertension. Moreover, IL-17A has a central role for the vascular infiltration of myeloid cells into the arterial wall in Angiotensin II-induced vascular inflammation. The intention of our study was to analyze the impact of T cell-derived IL-17A on hypertension, vascular function, and inflammation. Methods and Results: Chronic IL-17A overexpression in T cells (CD4-IL-17Aind/+ mice) resulted in elevated reactive oxygen species in the peripheral blood and a significant vascular dysfunction compared to control mice. The vascular dysfunction seen in the CD4-IL-17Aind/+ mice was only accompanied by a modest and nonsignificant accumulation of inflammatory cells within the vessel wall. Therefore, infiltrating myeloid cells did not serve as an explanation of the vascular dysfunction seen in a chronic IL-17A-driven mouse model. In addition to vascular dysfunction, CD4-IL-17Aind/+ mice displayed vascular fibrosis with highly proliferative fibroblasts. This fibroblast proliferation was induced by exposure to IL-17A as confirmed by in vitro experiments with primary murine fibroblastic cells. We also found that the ·NO/cGMP pathway was downregulated in the vasculature of the CD4-IL-17Aind/+ mice, while levels of protein tyrosine kinase 2 (PYK2), an oxidative stress-triggered process associated with T cell activation, were upregulated in the perivascular fat tissue (PVAT). Conclusions: Our data demonstrate that T cell-derived IL-17A elicits vascular dysfunction by mediating proliferation of fibroblasts and subsequent vascular fibrosis associated with PYK2 upregulation.


Assuntos
GMP Cíclico/metabolismo , Endotélio Vascular/fisiopatologia , Interleucina-17/metabolismo , Óxido Nítrico/metabolismo , Linfócitos T/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Proliferação de Células , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Quinase 2 de Adesão Focal/metabolismo , Interleucina-17/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Regulação para Cima
14.
Oxid Med Cell Longev ; 2019: 7092151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341533

RESUMO

Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.


Assuntos
Doenças Cardiovasculares/genética , Inflamação/complicações , Estresse Oxidativo/genética , Doenças Cardiovasculares/patologia , Humanos
15.
Biofactors ; 45(4): 495-506, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30937979

RESUMO

Environmental noise is a well-recognized health risk and part of the external exposome-the World Health Organization estimates that 1 million healthy life years are lost annually in Western Europe alone due to noise-related complications, including increased incidence of hypertension, heart failure, myocardial infarction, and stroke. Previous data suggest that noise works through two paired pathways in a proposed reaction model for noise exposure. As a nonspecific stressor, chronic low-level noise exposure can cause a disruption of sleep and communication leading to annoyance and subsequent sympathetic and endocrine stress responses leading to increased blood pressure, heart rate, stress hormone levels, and in particular more oxidative stress, being responsible for vascular dysfunction and representing changes of the internal exposome. Chronic stress generates cardiovascular risk factors on its own such as increased blood pressure, blood viscosity, blood glucose, and activation of blood coagulation. To this end, persistent chronic noise exposure increases cardiometabolic diseases, including arterial hypertension, coronary artery disease, arrhythmia, heart failure, diabetes mellitus type 2, and stroke. The present review discusses the mechanisms of the nonauditory noise-induced cardiovascular and metabolic consequences, focusing on mental stress signaling pathways, activation of the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system, the association of these activations with inflammation, and the subsequent onset of oxidative stress and vascular dysfunction. © 2019 BioFactors, 45 (4):495-506, 2019.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Doença da Artéria Coronariana/induzido quimicamente , Diabetes Mellitus Tipo 2/induzido quimicamente , Poluentes Ambientais/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Hipertensão/induzido quimicamente , Acidente Vascular Cerebral/induzido quimicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Coagulação Sanguínea/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Viscosidade Sanguínea/efeitos dos fármacos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
16.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621010

RESUMO

The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even "uncoupling" of the enzyme by adverse regulation of well-defined "redox switches" in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.


Assuntos
Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/terapia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Epigênese Genética , Humanos , Modelos Biológicos , Oxirredução , Fatores Socioeconômicos
17.
Basic Res Cardiol ; 114(2): 8, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643968

RESUMO

Mice with a global deletion of α1AMPK are characterized by endothelial dysfunction and NADPH oxidase subunit 2 (NOX-2)-mediated vascular oxidative stress. However, the underlying mechanisms are incompletely understood and may involve endothelial NOX-2 upregulation or facilitated vascular infiltration of phagocytic cells. Therefore, the current study was designed to investigate the vascular effects of chronic angiotensin II (AngII) infusion in mice with an endothelial-specific α1AMPK deletion. A mouse strain with endothelial-specific α1AMPK deletion was generated by breeding α1AMPKflox/flox mice with TekCre+ or Cadh5Cre+ mice. Chronic AngII infusion (0.5 mg/kg/day for 7day) caused mild endothelial dysfunction in wild-type mice that was significantly aggravated in endothelial α1AMPK knockout mice. Aortic NOX-2 and CD68 expression were increased, indicating that infiltrating leukocytes may significantly contribute to enhanced vascular oxidative stress. Flow cytometry revealed a higher abundance of aortic CD90.2+ T-cells, CD11b+F4/80+ macrophages and Ly6G-Ly6C+ monocytes. Vascular mRNA expression of monocyte chemoattractant protein 1, CCL5 and vascular cell adhesion molecule 1 was enhanced in AngII-infused mice lacking endothelial α1AMPK, facilitating the recruitment of inflammatory cells to the vessel wall. In addition, AngII-induced upregulation of cytoprotective heme oxygenase 1 (HO-1) was blunted in mice with endothelial α1AMPK deletion, compatible with an impaired antioxidant defense in these animals. In summary, endothelial expressed α1AMPK limits the recruitment of inflammatory cells to the vessel wall and maintains HO-1 mediated antioxidant defense. Both mechanisms reduce vascular oxidative damage and preserve endothelial function during chronic AngII treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/metabolismo , Angiotensina II/toxicidade , Animais , Antioxidantes/metabolismo , Endotélio Vascular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
18.
J Clin Endocrinol Metab ; 103(10): 3668-3677, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099546

RESUMO

Context: We hypothesized that TSH-receptor (TSHR) stimulating antibodies (TSAbs) are involved in oxidative stress mechanisms in patients with Graves disease (GD). Methods: Nicotinamide adenine dinucleotide phosphate oxidase, isoform 2 (NOX2); oxidative parameters; and oxidative burst were measured in serum, urine, and whole blood from patients with GD and control subjects. Superoxide production was investigated in human embryonic kidney (HEK)-293 cells stably overexpressing the TSHR. Lipid peroxidation was determined by immunodot-blot analysis for protein-bound 4-hydroxy-2-nonenal (4-HNE) in human primary thyrocytes and HEK-293-TSHR cells. Results: Serum NOX2 levels were markedly higher in hyperthyroid untreated vs euthyroid treated patients with GD, hyperthyroid patients with toxic nodular goiter, and euthyroid healthy control subjects (all P < 0.0001). Urine oxidative parameters were increased in patients with GD vs patients with toxic goiter (P < 0.01) and/or control subjects (P < 0.001). The maximum of the zymosan A- and phorbol 12,13-dibutyrate-induced respiratory burst of leukocytes was 1.5-fold higher in whole blood from hyperthyroid patients with GD compared with control subjects (P < 0.001 and P < 0.05). Monoclonal M22 TSAbs stimulated cAMP (HEK cells) in a dose-dependent manner. M22 (P = 0.0082), bovine TSH (P = 0.0028), and sera of hyperthyroid patients with GD (P < 0.05) increased superoxide-specific 2-hydroxyethidium levels in HEK-293 TSHR cells after 48-hour incubation vs control subjects. In contrast, triiodothyronine (T3) did not affect reactive oxygen species (ROS) production. In primary thyrocytes, the 4-HNE marker was higher in patients with GD vs control subjects at 6 and 48 hours (P = 0.02 and P = 0.04, respectively). Further, after 48-hour incubation of HEK-293 TSHR cells with patient sera, 4-HNE was higher in patients with untreated GD compared with control subjects (P < 0.05). Conclusions: Monoclonal M22 and polyclonal serum TSAbs augment ROS generation and/or induce lipid peroxidation.


Assuntos
Doença de Graves/imunologia , Doença de Graves/patologia , Imunoglobulinas Glândula Tireoide-Estimulantes/sangue , Imunoglobulinas Glândula Tireoide-Estimulantes/imunologia , Estresse Oxidativo , Receptores da Tireotropina/imunologia , Adulto , Biomarcadores/análise , Feminino , Seguimentos , Doença de Graves/sangue , Células HEK293 , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
Cardiovasc Res ; 114(14): 1883-1893, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982418

RESUMO

Aims: Immune cell function involves energy-dependent processes including growth, proliferation, and cytokine production. Since the AMP-activated protein kinase (AMPK) is a crucial regulator of intracellular energy homeostasis, its expression and activity may also affect innate and adaptive immune cell responses. Therefore, we aimed to investigate the consequences of α1AMPK deletion in myelomonocytic cells on vascular function, inflammation, and hypertension during chronic angiotensin II (ATII) treatment. Methods and results: We generated a mouse strain with α1AMPK deletion in lysozyme M+ myelomonocytic cells. Compared to controls, chronic ATII infusion (1 mg/kg/day for 7 days) lead to increased vascular oxidative stress and aggravated endothelial dysfunction in LysM-Cre+ x α1AMPKfl/fl mice. This was accompanied by an increased aortic infiltration of CD11b+F4/80+ macrophages and enhanced pro-inflammatory cytokine release (tumour necrosis factor-alpha, interferon-gamma, and interleukin-6). Mechanistically, we found that increased expression of C-C chemokine receptor 2 (CCR2) in α1AMPK deficient myelomonocytic cells facilitated their recruitment to the vascular wall. In addition, expression of the ATII receptor type 1a and the oxidative burst was increased in these cells, indicating an increased susceptibility towards pro-oxidant stimuli. Conclusions: In summary, α1AMPK deletion in myelomonocytic cells aggravates vascular oxidative stress and dysfunction by enhancing their recruitment to the vascular wall and increasing their susceptibility towards pro-oxidant stimuli. Our observations suggest that metabolic control in myelomonocytic cells has profound implications for their inflammatory phenotype and may trigger the development of vascular disease.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Aorta/enzimologia , Doenças da Aorta/enzimologia , Citocinas/metabolismo , Deleção de Genes , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Estresse Oxidativo , Vasodilatação , Proteínas Quinases Ativadas por AMP/genética , Angiotensina II , Animais , Aorta/fisiopatologia , Doenças da Aorta/induzido quimicamente , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais
20.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29905797

RESUMO

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Assuntos
Aeronaves , Encéfalo/fisiopatologia , Endotélio Vascular/fisiopatologia , NADPH Oxidase 2/fisiologia , Ruído dos Transportes/efeitos adversos , Privação do Sono/fisiopatologia , Animais , Relógios Circadianos/fisiologia , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Humanos , Inflamação/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA