Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc Stem Cell Biol ; 55(1): e122, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956578

RESUMO

Translating basic biological knowledge into applications remains a key issue for effectively tackling neurodegenerative, neuroinflammatory, or neuroendocrine disorders. Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) still poses a demanding challenge for drug development targeting central nervous system diseases. Validated in vitro models of the BBB could facilitate effective testing of drug candidates targeting the brain early in the drug discovery process during lead generation. We here review the potential of mono- or (isogenic) co-culture BBB models based on brain capillary endothelial cells (BCECs) derived from human-induced pluripotent stem cells (hiPSCs), and compare them to several available BBB in vitro models from primary human or non-human cells and to rodent in vivo models, as well as to classical and widely used barrier models [Caco-2, parallel artificial membrane permeability assay (PAMPA)]. In particular, we are discussing the features and predictivity of these models and how hiPSC-derived BBB models could impact future discovery and development of novel CNS-targeting therapeutics. © 2020 The Authors.

2.
Chemistry ; 26(32): 7299-7308, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32358806

RESUMO

Alzheimer's disease (AD) is a neurological disorder with still no preventive or curative treatment. Flavonoids are phytochemicals with potential therapeutic value. Previous studies described the flavanone sterubin isolated from the Californian plant Eriodictyon californicum as a potent neuroprotectant in several in vitro assays. Herein, the resolution of synthetic racemic sterubin (1) into its two enantiomers, (R)-1 and (S)-1, is described, which has been performed on a chiral chromatographic phase, and their stereochemical assignment online by HPLC-ECD coupling. (R)-1 and (S)-1 showed comparable neuroprotection in vitro with no significant differences. While the pure stereoisomers were configurationally stable in methanol, fast racemization was observed in the presence of culture medium. We also established the occurrence of extracted sterubin as its pure (S)-enantiomer. Moreover, the activity of sterubin (1) was investigated for the first time in vivo, in an AD mouse model. Sterubin (1) showed a significant positive impact on short- and long-term memory at low dosages.


Assuntos
Eriodictyon/química , Flavanonas/química , Flavonoides/química , Luteolina/química , Fármacos Neuroprotetores/química , Animais , Cromatografia Líquida de Alta Pressão , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Estereoisomerismo
3.
Mol Pharm ; 17(6): 1835-1847, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315193

RESUMO

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with the potential to cross the blood-brain barrier; however, the concentrations necessary for a cytotoxic effect against cancer cells exceed the concentrations achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the three-dimensional (3D) models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration; however, if transport across the blood-brain barrier is sufficient to reach the therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.

4.
Transl Stroke Res ; 10(6): 672-683, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30617994

RESUMO

Blood-brain barrier (BBB) integrity is one of the important elements of central nervous system (CNS) homeostasis. MicroRNAs (miRs) have been demonstrated to play a role in many CNS disorders such as stroke and traumatic brain injury. MiR-212/132 are highly expressed in the CNS but their role at the BBB has not been characterized yet. Thus, we analyzed the expression of miR-212/132 in hypoxic mouse and human brain microvascular endothelial cells (BMEC) as well as in posttraumatic mouse and human brain tissue and serum exosomes. MiR-212/132 expression was detected in brain capillaries by in situ hybridization and was increased up to ten times in hypoxic BMEC. Over-expression of pre-miR-212/132 in BMEC decreased barrier properties and reduced migration of BMEC in the wound healing assay. We identified and validated tight junction proteins claudin-1 (Cldn1), junctional adhesion molecule 3 (Jam3), and tight junction-associated protein 1 (Tjap1) as potential miR-212/132 targets. Over-expression of miRs led to a decrease in mRNA and protein expression of Cldn1, Jam3, and Tjap1, which could be rescued by a respective anti-miR. In conclusion, our study identifies miR-212/132 as critical players at the hypoxic BBB. In addition, we propose three new direct miR-212/132 targets to be involved in miR-212/132-mediated effects on BBB properties.

5.
Int J Legal Med ; 133(4): 1107-1114, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073510

RESUMO

In many forensic cases, the existence of a traumatic brain injury (TBI) is an essential factor, and the determination of the survival time is nearly as important as the determination of whether or not a trauma exists. Since it is known that glucose uptake increases in injured brain cells in order to perpetuate the neuronal integrity, this study focuses on the pathomechanism of brain glucose supply via sodium/glucose cotransporters 1 and 2 (SGLT1, SGLT2) following traumatization. Human cerebrum tissue of male and female individuals who died following TBI was taken from the contusional and contralateral regions, as well as from individuals deceased due to cardiac arrest (control group). Total SGLT1 and SGLT2 protein expression was analyzed by immunoblotting comparing injured and non-injured tissue. The immunoreactivity in contusional cerebral cortex region began to increase 3 to 7 h following traumatization. We found that both SGLT1 and SGLT2 protein expression increased significantly 37 h post-injury compared to the control group. SGLT1 rose significantly at 52 h post-injury and peaked significantly at 72 h, while SGLT2 rose significantly at 52 and 72 h after injury. By compiling these data, we predict a standard operator via SGLT expression as a comparative expression assertion to determine post-injury survival time for unknown cases. Our result suggests that SGLT1 and SGLT2 protein expression may be useful in forensic practice as an effective target to analyze the existence of a TBI and to determine the time of the traumatization.


Assuntos
Encéfalo/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transporte Biológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA