Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMJ ; 374: n1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470785

RESUMO

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Doenças não Transmissíveis/mortalidade , Europa (Continente) , Humanos
2.
Lancet Planet Health ; 5(9): e620-e632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508683

RESUMO

BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 µg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 µg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 µg/m3 for PM2·5 and 40 µg/m3 for NO2. INTERPRETATION: Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING: Health Effects Institute.

3.
Sci Total Environ ; 804: 150091, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.

4.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088754

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Exposição Ambiental/análise , Europa (Continente) , Humanos , Incidência , Material Particulado/análise , Suécia
5.
Environ Health Perspect ; 129(4): 47009, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844598

RESUMO

BACKGROUND: Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤2.5 µm [fine particulate matter (PM2.5)] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES: We investigated the associations between long-term exposure to PM2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS: We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100×100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and nitrogen dioxide (NO2) separately. RESULTS: We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM2.5 and NO2. HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng/m3, adjusting for PM2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION: Long-term exposure to V in PM2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.

6.
PLoS One ; 16(3): e0247880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651844

RESUMO

Tinnitus and pain have many similarities. Both are subjective sensations that may turn chronic, they are often accompanied by hypersensitivity in their respective sensory system, and overlapping brain changes have been observed. Since no population study has examined the empirical association between chronic pain and tinnitus, the present study aimed to explore the relationship in a general adult population. We used data from the seventh survey of the Tromsø Study (2015-2016). Participants (aged ≥40) responded to questions about pain and tinnitus. Using multiple logistic regression, we analysed the adjusted relationship between chronic pain and tinnitus in the full sample (n = 19,039), using several tinnitus definitions ranging from tinnitus >5 minutes within the past 12 months (broadest definition) to at least weekly and highly bothersome tinnitus (strictest definition). We also analysed relationships between number of body regions with pain, pain intensity and bothering, and tinnitus >5 minutes, among participants with chronic pain (n = 11,589). We found an association between chronic pain and tinnitus that was present irrespective of tinnitus definition, but was stronger with more bothersome tinnitus. With chronic pain, the odds of tinnitus >5 minutes was 64% higher, while odds of at least weekly, highly bothersome tinnitus was 144% higher than without chronic pain. Among participants with chronic pain, the number of pain regions was the pain variable most strongly associated with tinnitus >5 minutes (OR = 1.17 (95% CI: 1.14-1.20) for an increase of one region), whereas the other pain variables (intensity and bothering) showed weaker associations. All chronic pain variables had significant interactions with age, with the strongest associations for the youngest individuals (40-54 years). Our findings support the existence of an association between chronic pain and tinnitus and emphasises the importance of examining for comorbid pain in tinnitus patients to provide a more comprehensive treatment of tinnitus.


Assuntos
Dor Crônica/epidemiologia , Zumbido/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Prevalência
7.
Environ Int ; 147: 106371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422970

RESUMO

BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
8.
Environ Int ; 146: 106306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395948

RESUMO

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/efeitos adversos , Material Particulado/análise
9.
Environ Res ; 193: 110568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278469

RESUMO

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
10.
Environ Int ; 146: 106249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197787

RESUMO

BACKGROUND/AIM: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence. METHODS: The "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines. RESULTS: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O3 (warm season) were 24.2 µg/m3 (19.5, 29.7), 15.4 µg/m3 (12.8, 17.3), 1.6 10-5m-1 (1.3, 1.8), and 86.6 µg/m3 (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 µg/m3). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 µg/m3. We did not observe associations between NO2, BC or O3 and lung cancer incidence. CONCLUSIONS: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
11.
Environ Int ; 146: 106267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276316

RESUMO

BACKGROUND: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES: We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 µg/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 µg/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Material Particulado/análise , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Suécia
12.
Eur Respir J ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303534

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, while evidence is still insufficient. Within the multicentre project "Effects of Low-Level Air Pollution: A Study in Europe" (ELAPSE), we examined the associations of long-term exposures to particulate matter with diameter<2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a 16.6 years mean follow-up. We observed associations in fully adjusted models with hazard ratios and 95% confidence intervals of 1.22 (1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (1.10-1.25) per 10 µg·m-3 for NO2, and 1.15 (1.08-1.23) per 0.5 10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the EU and US limit values and possibly WHO guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.

13.
Environ Sci Technol ; 54(24): 15698-15709, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237771

RESUMO

We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 µm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Europa (Continente) , Modelos Lineares , Material Particulado/análise , Zinco/análise
14.
Environ Int ; 144: 106038, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32854059

RESUMO

INTRODUCTION: Early onset and high prevalence of allergic diseases result in high individual and socio-economic burdens. Several studies provide evidence for possible effects of environmental factors on allergic diseases, but these are mainly single-exposure studies. The exposome provides a novel holistic approach by simultaneously studying a large set of exposures. The aim of the study was to evaluate the association between a broad range of prenatal and childhood environmental exposures and allergy-related outcomes in children. MATERIAL AND METHODS: Analyses of associations between 90 prenatal and 107 childhood exposures and allergy-related outcomes (last 12 months: rhinitis and itchy rash; ever: doctor-diagnosed eczema and food allergy) in 6-11 years old children (n = 1270) from the European Human Early-Life Exposome cohort were performed. Initially, we used an exposome-wide association study (ExWAS) considering the exposures independently, followed by a deletion-substitution-addition selection (DSA) algorithm considering all exposures simultaneously. All the exposure variables selected in the DSA were included in a final multi-exposure model using binomial general linear model (GLM). RESULTS: In ExWAS, no exposures were associated with the outcomes after correction for multiple comparison. In multi-exposure models for prenatal exposures, lower distance of residence to nearest road and higher di-iso-nonyl phthalate level were associated with increased risk of rhinitis, and particulate matter absorbance (PMabs) was associated with a decreased risk. Furthermore, traffic density on nearest road was associated with increased risk of itchy rash and diethyl phthalate with a reduced risk. DSA selected no associations of childhood exposures, or between prenatal exposures and eczema or food allergy. DISCUSSION: This first comprehensive and systematic analysis of many environmental exposures suggests that prenatal exposure to traffic-related variables, PMabs and phthalates are associated with rhinitis and itchy rash.


Assuntos
Eczema , Hipersensibilidade Alimentar , Criança , Estudos de Coortes , Eczema/epidemiologia , Eczema/etiologia , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Gravidez , Prevalência
15.
PLoS One ; 14(12): e0226221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830088

RESUMO

Health effects of traffic-related air pollution (TRAP) concentrations in densely populated areas are previously described. However, there is still a lack of knowledge of the health effects of moderate TRAP levels. The aim of the current study, a population-based survey including 16 099 adults (response rate 33%), was to assess the relationship between TRAP estimates and respiratory symptoms in an area with modest levels of traffic; Telemark County, Norway. Respondents reported respiratory symptoms the past 12 months and two TRAP exposure estimates: amount of traffic outside their bedroom window and time spent by foot daily along a moderate to heavy traffic road. Females reported on average more symptoms than males. Significant relationships between traffic outside their bedroom window and number of symptoms were only found among females, with the strongest associations among female occasional smokers (incidence rate ratio [IRR], 1.75, 95% confidence interval (CI) [1.16-2.62] for moderate or heavy traffic compared to no traffic). Significant relationship between time spent daily by foot along a moderate to heavy traffic road and number of symptoms was found among male daily smokers (IRR 1.09, 95% CI [1.04-1.15] per hour increase). Associations between traffic outside bedroom window and each respiratory symptom were found. Significant associations were primarily detected among females, both among smokers and non-smokers. Significant associations between time spent by foot daily along a moderate to heavy traffic road (per hour) and nocturnal dyspnoea (odds ratio (OR) 1.20, 95% CI [1.05-1.38]), nocturnal chest tightness (OR 1.13 [1.00-1.28]) and wheezing (OR 1.14 [1.02-1.29]) were found among daily smokers, primarily men. Overall, we found significant associations between self-reported TRAP exposures and respiratory symptoms. Differences between genders and smoking status were identified. The findings indicate an association between TRAP and respiratory symptoms even in populations exposed to modest levels of TRAP.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/etiologia , Autorrelato , Poluição Relacionada com o Tráfego/efeitos adversos , Emissões de Veículos/análise , Adolescente , Adulto , Asma/epidemiologia , Asma/etiologia , Estudos Transversais , Dispneia/epidemiologia , Dispneia/etiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Sons Respiratórios/etiologia , Doenças Respiratórias/epidemiologia , Adulto Jovem
16.
Pharmacoepidemiol Drug Saf ; 28(10): 1336-1343, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407838

RESUMO

PURPOSE: The purpose of the present study was to assess the agreement between self-reported use of sleep medications and tranquilizers and dispensed hypnotics and anxiolytics. METHODS: Self-reported medication use was obtained from the population-based survey Health and Environment in Oslo (HELMILO) (2009-2010) (n = 13 019). Data on dispensed hypnotics and anxiolytics were obtained from the Norwegian Prescription Database (NorPD). As measures of validity, we calculated sensitivity and specificity using both self-reports and prescription records as the reference standard. Furthermore, we calculated Cohen's kappa. Current self-reported medication use was compared with prescription data in time windows of both 100 and 200 days preceding questionnaire completion. RESULTS: The highest sensitivity was observed for current sleep medication use in the 100-day time window (sensitivity = 0.76, 95% confidence interval [CI]: 0.74, 0.79) when using prescription records as the reference standard. Sensitivity was generally lower for tranquilizers compared with sleep medications. Cohen's kappa showed the highest agreement for the 200-day time window with substantial agreement for sleep medications (kappa = 0.64; 95% CI: 0.62, 0.67) and moderate agreement for tranquilizers (kappa = 0.45; 95% CI: 0.41, 0.48). CONCLUSIONS: The present study suggests moderate to substantial agreement between self-reported use of sleep medications and tranquilizers and dispensed drugs in a general adult population. The magnitude of agreement varied according to drug category and time window. Since self-reported and registry-based use of these drug classes does not match each other accurately, limitations of each data source should be considered when such medications are applied as the exposure or outcome in epidemiologic studies.


Assuntos
Farmacoepidemiologia/métodos , Sistema de Registros/estatística & dados numéricos , Autorrelato/estatística & dados numéricos , Medicamentos Indutores do Sono/uso terapêutico , Tranquilizantes/uso terapêutico , Adulto , Estudos Transversais , Prescrições de Medicamentos/estatística & dados numéricos , Feminino , Humanos , Masculino , Noruega , Farmacoepidemiologia/estatística & dados numéricos , Medicamentos sob Prescrição/uso terapêutico , Sensibilidade e Especificidade
17.
Lancet Planet Health ; 3(2): e81-e92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737192

RESUMO

BACKGROUND: Several single-exposure studies have documented possible effects of environmental factors on lung function, but none has relied on an exposome approach. We aimed to evaluate the association between a broad range of prenatal and postnatal lifestyle and environmental exposures and lung function in children. METHODS: In this analysis, we used data from 1033 mother-child pairs from the European Human Early-Life Exposome (HELIX) cohort (consisting of six existing longitudinal birth cohorts in France, Greece, Lithuania, Norway, Spain, and the UK of children born between 2003 and 2009) for whom a valid spirometry test was recorded for the child. 85 prenatal and 125 postnatal exposures relating to outdoor, indoor, chemical, and lifestyle factors were assessed, and lung function was measured by spirometry in children at age 6-12 years. Two agnostic linear regression methods, a deletion-substitution-addition (DSA) algorithm considering all exposures simultaneously, and an exposome-wide association study (ExWAS) considering exposures independently, were applied to test the association with forced expiratory volume in 1 s percent predicted values (FEV1%). We tested for two-way interaction between exposures and corrected for confounding by co-exposures. FINDINGS: In the 1033 children (median age 8·1 years, IQR 6·5-9·0), mean FEV1% was 98·8% (SD 13·2). In the ExWAS, prenatal perfluorononanoate (p=0·034) and perfluorooctanoate (p=0·030) exposures were associated with lower FEV1%, and inverse distance to nearest road during pregnancy (p=0·030) was associated with higher FEV1%. Nine postnatal exposures were associated with lower FEV1%: copper (p=0·041), ethyl-paraben (p=0·029), five phthalate metabolites (mono-2-ethyl 5-carboxypentyl phthalate [p=0·016], mono-2-ethyl-5-hydroxyhexyl phthalate [p=0·023], mono-2-ethyl-5-oxohexyl phthalate [p=0·0085], mono-4-methyl-7-oxooctyl phthalate [p=0·040], and the sum of di-ethylhexyl phthalate metabolites [p=0·014]), house crowding (p=0·015), and facility density around schools (p=0·027). However, no exposure passed the significance threshold when corrected for multiple testing in ExWAS, and none was selected with the DSA algorithm, including when testing for exposure interactions. INTERPRETATION: Our systematic exposome approach identified several environmental exposures, mainly chemicals, that might be associated with lung function. Reducing exposure to these ubiquitous chemicals could help to prevent the development of chronic respiratory disease. FUNDING: European Community's Seventh Framework Programme (HELIX project).


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Pulmão/efeitos dos fármacos , Adulto , Criança , Pré-Escolar , Feminino , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal
18.
Environ Int ; 120: 163-171, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30096610

RESUMO

INTRODUCTION: Previous analysis from the large European multicentre ESCAPE study showed an association of ambient particulate matter <2.5 µm (PM2.5) air pollution exposure at residence with the incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with PM mass. We evaluated the association between long-term exposure to elemental components of PM2.5 and PM10 and gastric and UADT cancer incidence in European adults. METHODS: Baseline addresses of individuals were geocoded and exposure was assessed by land-use regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. RESULTS: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM2.5_S was 1.92 (95%-confidence interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts (I2 = 0%), and 1.63 (95%-CI 0.88;3.01) for PM2.5_Zn (I2 = 70%). For the other elements in PM2.5 and all elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs were seen. No association was found between any of the elements and UADT cancer. The HR for PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and restriction to study participants with stable addresses over follow-up resulted in slightly higher effect estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 decreased whereas that for PM2.5_S was robust. CONCLUSION: This large multicentre cohort study shows a robust association between gastric cancer and long-term exposure to PM2.5_S but not PM10_S, suggesting that S in PM2.5 or correlated air pollutants may contribute to the risk of gastric cancer.


Assuntos
Poluição do Ar , Exposição Ambiental , Material Particulado/análise , Neoplasias Gástricas/epidemiologia , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Europa (Continente)/epidemiologia , Seguimentos , Humanos , Metais Pesados/análise , Modelos de Riscos Proporcionais
19.
Environ Health Perspect ; 126(7): 077005, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024382

RESUMO

BACKGROUND: The urban exposome is the set of environmental factors that are experienced in the outdoor urban environment and that may influence child development. OBJECTIVE: The authors' goal was to describe the urban exposome among European pregnant women and understand its socioeconomic determinants. METHODS: Using geographic information systems, remote sensing and spatio-temporal modeling we estimated exposure during pregnancy to 28 environmental indicators in almost 30,000 women from six population-based birth cohorts, in nine urban areas from across Europe. Exposures included meteorological factors, air pollutants, traffic noise, traffic indicators, natural space, the built environment, public transport, facilities, and walkability. Socioeconomic position (SEP), assessed at both the area and individual level, was related to the exposome through an exposome-wide association study and principal component (PC) analysis. RESULTS: Mean±standard deviation (SD) NO2 levels ranged from 13.6±5.1 µg/m3 (in Heraklion, Crete) to 43.2±11 µg/m3 (in Sabadell, Spain), mean±SD walkability score ranged from 0.22±0.04 (Kaunas, Lithuania) to 0.32±0.07 (Valencia, Spain) and mean±SD Normalized Difference Vegetation Index ranged from 0.21±0.05 in Heraklion to 0.51±0.1 in Oslo, Norway. Four PCs explained more than half of variation in the urban exposome. There was considerable heterogeneity in social patterning of the urban exposome across cities. For example, high-SEP (based on family education) women lived in greener, less noisy, and less polluted areas in Bradford, UK (0.39 higher PC1 score, 95% confidence interval (CI): 0.31, 0.47), but the reverse was observed in Oslo (-0.57 PC1 score, 95% CI: -0.73, -0.41). For most cities, effects were stronger when SEP was assessed at the area level: In Bradford, women living in high SEP areas had a 1.34 higher average PC1 score (95% CI: 1.21, 1.48). CONCLUSIONS: The urban exposome showed considerable variability across Europe. Pregnant women of low SEP were exposed to higher levels of environmental hazards in some cities, but not others, which may contribute to inequities in child health and development. https://doi.org/10.1289/EHP2862.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/metabolismo , Fatores Socioeconômicos , Adolescente , Adulto , Cidades , Europa (Continente) , Feminino , Humanos , População Urbana/estatística & dados numéricos , Adulto Jovem
20.
Epidemiology ; 29(5): 729-738, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29927819

RESUMO

BACKGROUND: Being overweight constitutes a health risk, and the proportion of overweight and obese children is increasing. It has been argued that road traffic noise could be linked to adiposity through its influence on sleep and stress. Few studies, to our knowledge, have investigated whether noise and adiposity are associated. Most of them were on adults, and we are not aware of any longitudinal study using repeated measures. OBJECTIVES: The present longitudinal study investigated whether road traffic noise exposures in pregnancy (N = 6,963; obs = 22,975) or childhood (N = 6,403; obs = 14,585) were associated with body mass index (BMI) trajectories in children. METHODS: We obtained information on BMI and covariates from questionnaires used in the Norwegian Mother and Child Cohort Study, Statistics Norway, and Medical Birth Registry of Norway. We modeled road traffic noise for the most exposed façade of children's present and historical addresses at 6 time points from pregnancy to age 8. We investigated effects on BMI trajectories using repeated measures and linear mixed models. RESULTS: The results indicated that BMI curves depended on road traffic noise exposure during pregnancy, but not on exposure during childhood. Children in the highest decile of traffic noise exposure had increased BMI, with 0.35 kg/m more than children in the lowest decile, from birth to age 8 years. CONCLUSIONS: The results indicate that exposure to road traffic noise during pregnancy may be associated with children's BMI trajectories. Future studies should investigate this further, using anthropometric measures such as waist-hip ratio and skinfold thickness, in addition to BMI.


Assuntos
Índice de Massa Corporal , Ruído dos Transportes/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Criança , Desenvolvimento Infantil , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Ruído dos Transportes/estatística & dados numéricos , Noruega/epidemiologia , Obesidade Pediátrica/epidemiologia , Obesidade Pediátrica/etiologia , Gravidez , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...