Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; : e2103974, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510572

RESUMO

Continuous monitoring of vital signs is an essential aspect of operations in neonatal and pediatric intensive care units (NICUs and PICUs), of particular importance to extremely premature and/or critically ill patients. Current approaches require multiple sensors taped to the skin and connected via hard-wired interfaces to external data acquisition electronics. The adhesives can cause iatrogenic injuries to fragile, underdeveloped skin, and the wires can complicate even the most routine tasks in patient care. Here, materials strategies and design concepts are introduced that significantly improve these platforms through the use of optimized materials, open (i.e., "holey") layouts and precurved designs. These schemes 1) reduce the stresses at the skin interface, 2) facilitate release of interfacial moisture from transepidermal water loss, 3) allow visual inspection of the skin for rashes or other forms of irritation, 4) enable triggered reduction of adhesion to reduce the probability for injuries that can result from device removal. A combination of systematic benchtop testing and computational modeling identifies the essential mechanisms and key considerations. Demonstrations on adult volunteers and on a neonate in an operating NICUs illustrate a broad range of capabilities in continuous, clinical-grade monitoring of conventional vital signs, and unconventional indicators of health status.

3.
Nat Commun ; 12(1): 5008, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429436

RESUMO

Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.


Assuntos
Técnicas Biossensoriais/métodos , Fontes de Energia Elétrica , Pressão , Temperatura , Tecnologia sem Fio , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Pele , Termografia/instrumentação , Termografia/métodos
5.
Adv Healthc Mater ; 10(4): e2000722, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989913

RESUMO

Eccrine sweat contains a rich blend of electrolytes, metabolites, proteins, metal ions, and other biomarkers. Changes in the concentrations of these chemical species can indicate alterations in hydration status and they can also reflect health conditions such as cystic fibrosis, schizophrenia, and depression. Recent advances in soft, skin-interfaced microfluidic systems enable real-time measurement of local sweat loss and sweat biomarker concentrations, with a wide range of applications in healthcare. Uses in certain contexts involve, however, physical impacts on the body that can dynamically deform these platforms, with adverse effects on measurement reliability. The work presented here overcomes this limitation through the use of microfluidic structures constructed in relatively high modulus polymers, and designed in geometries that offer soft, system level mechanics when embedded low modulus elastomers. Analytical models and finite element analysis quantitatively define the relevant mechanics of these systems, and serve as the basis for layouts optimized to allow robust operation in demanding, rugged scenarios such as those encountered in football, while preserving mechanical stretchability for comfortable, water-tight bonding to the skin. Benchtop testing and on-body field studies of measurements of sweat loss and chloride concentration under imposed mechanical stresses and impacts demonstrate the key features of these platforms.


Assuntos
Microfluídica , Suor , Eletrólitos , Reprodutibilidade dos Testes , Pele
6.
Nat Commun ; 11(1): 5990, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239608

RESUMO

Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica/instrumentação , Traumatismos dos Nervos Periféricos/terapia , Poliuretanos/química , Tecnologia sem Fio/instrumentação , Animais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Feminino , Humanos , Teste de Materiais , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Ratos , Regeneração , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106394

RESUMO

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Assuntos
Técnicas Biossensoriais/instrumentação , Microfluídica/métodos , Suor/química , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Impedância Elétrica , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Fluorometria , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Pele/química , Dispositivos Eletrônicos Vestíveis
8.
Sci Adv ; 6(35): eabb1093, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32923633

RESUMO

Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release. These valves operate through an electrochemical mechanism of geometrically accelerated corrosion induced by passage of electrical current from a wireless, bioresorbable power-harvesting unit. Evaluations in cell cultures demonstrate the efficacy of this technology for the treatment of cancerous tissues by release of the drug doxorubicin. Complete in vivo studies of platforms with multiple, independently controlled release events in live-animal models illustrate capabilities for control of blood glucose levels by timed delivery of insulin.

9.
Langmuir ; 36(30): 8939-8946, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32610911

RESUMO

Soft strain sensors have attracted significant attention in wearable human motion monitoring applications. However, there is still a huge challenge for decoupled measurement of multidirectional strains. In this study, we have developed a biaxial and stretchable strain sensor based on a carbon nanotube (CNT) film and a microdome array (MA)-patterned elastomeric substrate. The MA structures lead to generating localized and directional microcracks of CNT films within the intended regions under tensile strain. This mechanism allows a single sensing layer to act as a strain sensor capable of decoupling the biaxial strains into axial and transverse terms. The ratio of resistance change between two perpendicular axes is about 960% under an x-directional strain of 30%, demonstrating the biaxial decoupling capability. Also, the proposed strain sensor shows high stretchability and excellent long-term reliability under a cyclic loading test. Finally, wearable devices integrated with the strain sensor have been successfully utilized to monitor various human motions of the wrist, elbow, knee, and fingers by measuring joint bending and skin elongation.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Reprodutibilidade dos Testes
11.
Lab Chip ; 20(1): 84-92, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31776526

RESUMO

Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.


Assuntos
Oxirredutases do Álcool/metabolismo , Amônia/análise , Etanol/análise , Peroxidase do Rábano Silvestre/metabolismo , Dispositivos Lab-On-A-Chip , Suor/química , Amônia/metabolismo , Etanol/metabolismo , Voluntários Saudáveis , Humanos , Cinética , Suor/metabolismo
12.
ACS Appl Mater Interfaces ; 11(26): 23639-23648, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180635

RESUMO

Flexible and wearable pressure sensors have attracted a tremendous amount of attention due to their wider applications in human interfaces and healthcare monitoring. However, achieving accurate pressure detection and stability against external stimuli (in particular, bending deformation) over a wide range of pressures from tactile to body weight levels is a great challenge. Here, we introduce an ultrawide-range, bending-insensitive, and flexible pressure sensor based on a carbon nanotube (CNT) network-coated thin porous elastomer sponge for use in human interface devices. The integration of the CNT networks into three-dimensional microporous elastomers provides high deformability and a large change in contact between the conductive CNT networks due to the presence of micropores, thereby improving the sensitivity compared with that obtained using CNT-embedded solid elastomers. As electrical pathways are continuously generated up to high compressive strain (∼80%), the pressure sensor shows an ultrawide pressure sensing range (10 Pa to 1.2 MPa) while maintaining favorable sensitivity (0.01-0.02 kPa-1) and linearity ( R2 ∼ 0.98). Also, the pressure sensor exhibits excellent electromechanical stability and insensitivity to bending-induced deformations. Finally, we demonstrate that the pressure sensor can be applied in a flexible piano pad as an entertainment human interface device and a flexible foot insole as a wearable healthcare and gait monitoring device.


Assuntos
Técnicas Biossensoriais , Elastômeros/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Elastômeros/uso terapêutico , Condutividade Elétrica , Humanos , Porosidade , Pressão
13.
ACS Nano ; 13(10): 10972-10979, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31124670

RESUMO

Sensors that reproduce the complex characteristics of cutaneous receptors in the skin have important potential in the context of artificial systems for controlled interactions with the physical environment. Multimodal responses with high sensitivity and wide dynamic range are essential for many such applications. This report introduces a simple, three-dimensional type of microelectromechanical sensor that incorporates monocrystalline silicon nanomembranes as piezoresistive elements in a configuration that enables separate, simultaneous measurements of multiple mechanical stimuli, such as normal force, shear force, and bending, along with temperature. The technology provides high sensitivity measurements with millisecond response times, as supported by quantitative simulations. The fabrication and assembly processes allow scalable production of interconnected arrays of such devices with capabilities in spatiotemporal mapping. Integration with wireless data recording and transmission electronics allows operation with standard consumer devices.


Assuntos
Técnicas Biossensoriais , Fenômenos Físicos , Pele/metabolismo , Tato/fisiologia , Eletrônica , Fenômenos Mecânicos , Pele/química , Temperatura , Tato/genética
14.
ACS Appl Mater Interfaces ; 10(31): 26501-26509, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29999314

RESUMO

Nanopatterns of functional materials have successfully led innovations in a wide range of fields, but further exploration of their full potential has often been limited because of complex and cost-inefficient patterning processes. We here propose an additive nanopatterning process of functional materials from solution route using selective wetting phenomenon. The proposed process can produce nanopatterns as narrow as 150 nm with high yield over large area at ultrahigh process speed, that is, the speed of solution dragging, of up to ca. 4.6 m·min-1. The process is highly versatile that it can utilize a wide range of solution materials, control vertical structures including pattern thickness and multistacks, and produce nanopatterns on various substrates with emerging form factors such as foldability and disposability. The solution patterning in nanoscale by selective wetting is enabled by corresponding surface energy patterns in high contrast that are achieved by one-step imprinting onto hydrophobic/hydrophilic bilayers. The mechanisms and control parameters for the solution patterning are revealed by fluid-dynamic simulation. With the aforementioned advantages, we demonstrate 25 400 pixel-per-inch light-emitting pixel arrays and a plasmonic color filter of 10 cm × 10 cm area on a plastic substrate as potential applications.

15.
Sci Rep ; 8(1): 5747, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636488

RESUMO

Through the direct decomposition of an Al precursor ink AlH3{O(C4H9)2}, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

16.
Sci Rep ; 7(1): 11220, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894221

RESUMO

Next-generation transparent conductors (TCs) require excellent electromechanical durability under mechanical deformations as well as high electrical conductivity and transparency. Here we introduce a method for the fabrication of highly conductive, low-porosity, flexible metal grid TCs via temperature-controlled direct imprinting (TCDI) of Ag ionic ink. The TCDI technique based on two-step heating is capable of not only stably capturing the Ag ionic ink, but also reducing the porosity of thermally decomposed Ag nanoparticle structures by eliminating large amounts of organic complexes. The porosity reduction of metal grid TCs on a glass substrate leads to a significant decrease of the sheet resistance from 21.5 to 5.5 Ω sq-1 with an optical transmittance of 91% at λ = 550 nm. The low-porosity metal grid TCs are effectively embedded to uniform, thin and transparent polymer films with negligible resistance changes from the glass substrate having strong interfacial fracture energy (~8.2 J m-2). Finally, as the porosity decreases, the flexible metal grid TCs show a significantly enhanced electromechanical durability under bending stresses. Organic light-emitting diodes based on the flexible metal grid TCs as anode electrodes are demonstrated.

17.
Sci Rep ; 7: 46260, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393911

RESUMO

This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.

18.
ACS Appl Mater Interfaces ; 9(2): 1770-1780, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27996234

RESUMO

A highly stretchable, low-cost strain sensor was successfully prepared using an extremely cost-effective ionic liquid of ethylene glycol/sodium chloride. The hysteresis performance of the ionic-liquid-based sensor was able to be improved by introducing a wavy-shaped fluidic channel diminishing the hysteresis by the viscoelastic relaxation of elastomers. From the simulations on visco-hyperelastic behavior of the elastomeric channel, we demonstrated that the wavy structure can offer lower energy dissipation compared to a flat structure under a given deformation. The resistance response of the ionic-liquid-based wavy (ILBW) sensor was fairly deterministic with no hysteresis, and it was well-matched to the theoretically estimated curves. The ILBW sensors exhibited a low degree of hysteresis (0.15% at 250%), low overshoot (1.7% at 150% strain), and outstanding durability (3000 cycles at 300% strain). The ILBW sensor has excellent potential for use in precise and quantitative strain detections in various areas, such as human motion monitoring, healthcare, virtual reality, and smart clothes.


Assuntos
Líquidos Iônicos/química , Elasticidade , Elastômeros , Humanos , Íons , Movimento (Física)
19.
ACS Appl Mater Interfaces ; 8(17): 10937-45, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27074908

RESUMO

High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the "reservoir", is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (Rs) of <1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (Rs of 15.6 Ω/sq at a similar T). We estimate the Rs-T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.

20.
Echocardiography ; 26(6): 665-74, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19392842

RESUMO

INTRODUCTION: The synchrony of the pacing heart can be affected by the right ventricular (RV) pacing site and is crucial to cardiac function in pacemaker recipients. We evaluated the acute changes in cardiac synchrony according to the RV pacing sites in normal systolic functioning subjects with normal QRS. METHODS: We conducted this study with 30 patients with the pacing in the RV apex (RVA), RV septum (RVS), and RV outflow tract (RVOT) in a sequential manner. Transthoracic echocardiography was conducted at rest and during pacing in order to measure interventricular and intraventricular dyssynchrony in all patients. RESULTS: QRS duration (148.1 +/- 12.8 ms) of RVA pacing was significantly shorter than that of RVS pacing (154.4 +/- 14.1 ms, P < 0.01) and RVOT pacing (160.6 +/- 15.7 ms, P < 0.001). We noted no statistically significant difference in cardiac output according to the pacing sites. The interventricular dyssynchrony with M-mode and Doppler echocardiography in RVOT pacing was increased to an insignificant degree as compared with those with RVS pacing or RVA pacing. The intraventricular dyssynchrony with tissue Doppler echocardiography in RVA pacing was reduced significantly as compared with that of RVS pacing or RVOT (RVA = 60.3 +/- 32.7 ms, RVS = 82.1 +/- 33.8 ms, RVOT = 79.1 +/- 33.3 ms; RVA vs RVS = P < 0.05, RVA vs RVOT = P < 0.01, RVS vs RVOT = P = NS). CONCLUSION: RVA pacing is superior to RVS and RVOT pacing with regard to intraventricular synchrony in normal systolic functioning subjects with normal QRS. Cardiac output at RVA pacing is not inferior to other sites.


Assuntos
Débito Cardíaco/fisiologia , Estimulação Cardíaca Artificial/métodos , Ventrículos do Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Função Ventricular Direita/fisiologia , Feminino , Humanos , Coreia (Geográfico) , Masculino , Pessoa de Meia-Idade , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...