Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(30): 11746-11756, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861755

RESUMO

A novel perovskite fluoride, LixCoF3, which has an exceptionally low tolerance factor (0.81), has been synthesized via low-temperature lithium intercalation into a distorted ReO3-type fluoride CoF3 using organolithium reagents. Interestingly, this reaction is completed within 15 min at room temperature. Synchrotron X-ray diffractometry and optical second harmonic generation at room temperature have revealed that this compound shows a high-temperature LiNbO3-type structure (space group: R3̅c) involving Li-Co antisite defects and A-site splitting along the c direction. A-site splitting is consistent with the prediction based on hybrid Hartree-Fock density functional theory calculations. Co-L2,3 edge X-ray absorption spectroscopy, as well as bond valence sum analysis, has verified the divalent oxidation state of Co ions in the lithiated phase, suggesting that its composition is close to LiCoF3 (x ≈ 1). This compound exhibits a paramagnetic-to-antiferromagnetic transition at 36 K on cooling, accompanied by weak ferromagnetic ordering. The synthetic route based on low-temperature lithiation of metal fluorides host paves the way for obtaining a new LiNbO3-type fluoride family.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35839277

RESUMO

The Zintl compound, n-type Mg3Sb2, has been extensively investigated as a promising thermoelectric material. However, performance degradation caused by the loss of Mg element during device preparation and service is a main disadvantage in its utilization in thermoelectric devices. To suppress volatilization, diffusion, or reaction of Mg, we designed a graded concentration junction to control the interfacial elemental diffusion and improve the stability of the thermoelectric joint. We utilized the reaction product at the Ni/Mg3.2Sb2Y0.05 interface, the phase Mg4.3Sb3Ni, as a barrier layer material, and prepared Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni junctions. The results show that the interface behavior of the thermoelectric junction is optimized by the gradation of elemental concentration, thermal expansion coefficient, and work function. The Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni single-leg device showed high thermal stability at 673 K for 20 days, the contact resistance was stable at around 10 µΩ cm2, and the shear strength was maintained at about 20 MPa. The conversion efficiency of its single-leg device maintains nearly 90% of the best performance after aging at 673 K for 20 days.

3.
Inorg Chem ; 60(24): 18975-18980, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851091

RESUMO

The lithium argyrodites Li6PS5X (X = Cl, Br, and I) have attracted interest as fast solid ionic conductors for solid-state batteries. Within this class of materials, it has been previously suggested that more polarizable anions and larger substituents should influence the ionic conductivity (e.g., substituting S by Se). Building upon this work, we explore the influence of Sn substitution in lithium argyrodites Li6+xSnxP1-xSe5I in direct comparison to the previously reported Li6+xSnxP1-xS5I series. The (P5+/Sn4+)Se43/4- polyhedral volume, unit cell volume, and lithium coordination tetrahedra Li(48h)-(S/Se)3-I increase with Sn substitution in this new selenide series. Impedance spectroscopy reveals that increasing Sn4+ substitution results in a fivefold improvement in the ionic conductivity when compared to Li6PSe5I. This work provides further understanding of compositional influences for optimizing the ionic conductivity of solid electrolytes.

4.
Chem Sci ; 12(18): 6238-6263, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-34084423

RESUMO

The development of high-performance inorganic solid electrolytes is central to achieving high-energy- density solid-state batteries. Whereas these solid-state materials are often prepared via classic solid-state syntheses, recent efforts in the community have shown that mechanochemical reactions, solution syntheses, microwave syntheses, and various post-synthetic heat treatment routines can drastically affect the structure and microstructure, and with it, the transport properties of the materials. On the one hand, these are important considerations for the upscaling of a materials processing route for industrial applications and industrial production. On the other hand, it shows that the influence of the different syntheses on the materials' properties is neither well understood fundamentally nor broadly internalized well. Here we aim to review the recent efforts on understanding the influence of the synthetic procedure on the synthesis - (micro)structure - transport correlations in superionic conductors. Our aim is to provide the field of solid-state research a direction for future efforts to better understand current materials properties based on synthetic routes, rather than having an overly simplistic idea of any given composition having an intrinsic conductivity. We hope this review will shed light on the underestimated influence of synthesis on the transport properties of solid electrolytes toward the design of syntheses of future solid electrolytes and help guide industrial efforts of known materials.

5.
Inorg Chem ; 58(14): 9236-9245, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247817

RESUMO

Owing to their intrinsically low thermal conductivity and chemical diversity, materials within the I-V-VI2 family, and especially AgBiSe2, have recently attracted interest as promising thermoelectric materials. However, further investigations are needed in order to develop a more fundamental understanding of the origin of the low thermal conductivity in AgBiSe2, to evaluate possible stereochemical activity of the 6s2 lone pair of Bi3+, and to further elaborate on chemical design approaches for influencing the occurring phase transitions. In this work, a combination of temperature-dependent X-ray diffraction, Rietveld refinements of laboratory X-ray diffraction data, and pair distribution function analyses of synchrotron X-ray diffraction data is used to tackle the influence of Sb substitution within AgBi1-xSbxSe2 (0 ⩽ x ⩽ 0.15) on the phase transitions, local distortions, and off-centering of the structure. This work shows that, similar to other lone-pair-containing materials, local off-centering and distortions can be found in AgBiSe2. Furthermore, electronic and thermal transport measurements, in combination with the modeling of point-defect scattering, highlight the importance of structural characterizations toward understanding changes induced by elemental substitutions. This work provides new insights into the structure-transport correlations of the thermoelectric AgBiSe2.

6.
ACS Appl Mater Interfaces ; 10(50): 43682-43690, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30479127

RESUMO

Ternary compounds with a tetragonal chalcopyrite structure, such as CuGaTe2, are promising thermoelectric (TE) materials. It has been demonstrated in various chalcopyrite systems, including compounds with quaternary chalcopyrite-like structures, that the lattice parameter ratio, c/ a, being exactly 2.00 to have a pseudo-cubic structure is key to increase the degeneracy at the valence band edge and ultimately achieve high TE performance. Considering the fact that ZnSnSb2 with a chalcopyrite structure is reported to have c/ a close to 2.00, it is expected to have multiple valence bands leading to a high p-type zT. However, there are no complete investigations on the high temperature TE properties of ZnSnSb2 mainly because of the difficulty of obtaining a single-phase ZnSnSb2. In the present study, pure ZnSnSb2 samples with no impurities are synthesized successfully using a Sn flux-based method and TE properties are characterized up to 585 K. Transport properties and thermal analysis indicate that the structure of ZnSnSb2 remains chalcopyrite with no order-disorder transition and clearly show that ZnSnSb2 can be made to exhibit a high zT in the low-to-mid temperature range through further optimization.

7.
J Am Chem Soc ; 140(47): 16330-16339, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30380843

RESUMO

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest. Here, we systematically explore the influence of aliovalent substitution in Li6+ xP1- xGe xS5I using a combination of X-ray and neutron diffraction, as well as impedance spectroscopy and nuclear magnetic resonance. With increasing Ge content, an anion site disorder is induced and the activation barrier for ionic motion drops significantly, leading to the fastest lithium argyrodite so far with 5.4 ± 0.8 mS cm-1 in a cold-pressed state and 18.4 ± 2.7 mS cm-1 upon sintering. These high ionic conductivities allow for successful implementation within a thick-electrode solid-state battery that shows negligible capacity fade over 150 cycles. The observed changes in the activation barrier and changing site disorder provide an additional approach toward designing better performing solid electrolytes.

8.
J Am Chem Soc ; 140(43): 14464-14473, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30284822

RESUMO

Recent work on superionic conductors has demonstrated the influence of lattice dynamics and the softness of the lattice on ionic transport. When examining either the changes in the acoustic phonon spectrum or the whole phonon density of states, both a decreasing activation barrier of migration and a decreasing entropy of migration have been observed, highlighting that the paradigm of "the softer the lattice, the better" does not always hold true. However, both approaches to monitor the changing lattice dynamics probe different frequency ranges of the phonon spectrum, and thus, it is unclear if they are complementary. In this work, we investigate the lattice dynamics of the superionic conductor Na3PS4- xSe x by probing the optical phonon modes and the acoustic phonon modes, as well as the phonon density of states via inelastic neutron scattering. Notably, Raman spectroscopy shows the evolution of multiple local symmetry reduced polyhedral species, which likely affect the local diffusion pathways. Meanwhile, density functional theory and the ionic transport data are used to compare the different approaches for assessing the lattice dynamics. This work shows that, while acoustic and inelastic methods may be used to experimentally assess the overall changing lattice stiffness, calculations of the average vibrational energies between the mobile ions and the anion framework are important to assess and computationally screen for ionic conductors.

9.
ACS Appl Mater Interfaces ; 10(43): 37188-37197, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30296374

RESUMO

Li7La3Zr2O12 (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li+/H+ cation exchange makes their processing even more difficult. Formulation of suitable polymer/ceramic hybrid solid state electrolytes could be a prosperous way to reach the future large scale production of solid state Li-ion batteries. In fact, solvent mediated and/or slurry based wet-processing of the LLZO, e.g., tape-casting, could result in irreversible Li-ion loss of the pristine material due to Li+/H+ cation exchange. The concomitant structural changes and loss in functionality in terms of Li-ion conductivity are the results of the above process. Therefore, in the present work a systematic study on the chemical stability and structural retention of Al-substituted LLZO in different solvents is reported. It was found that Li+/H+ exchange in LLZO occurs upon solvent immersion, and its magnitude is dependent on the availability of -OH functional groups of the solvent molecules. As a result, a larger degree of Li+/H+ exchange causes higher increase of the lattice parameter of the LLZO, determined by synchrotron diffraction analyses. The expansion of the cubic unit cell was ascertained, when Li+ was replaced by H+ in the host lattice, by ab initio computational studies. The application of the most common solvent as dispersion medium, i.e., high purity water, causes the most significant Li+/H+ exchange and, therefore, structural change, while acetonitrile was proven to be the best suitable solvent for wet postprocessing of LLZO. Finally, computational calculations suggested that the Li+/H+ exchange could result in diminished ionic, i.e., mixed Li+-H+, conductivity due to the insertion of protons with lower mobility than that of Li-ions.

10.
Dalton Trans ; 44(15): 6767-74, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25670617

RESUMO

Zintl compounds with chemical formula Yb5M2Sb6 (M = Al, Ga, and In) form one of two known A5M2Pn6 structure types characterized by double chains of corner-linked MPn4 tetrahedra bridged by Pn2 dumbbells. High temperature electronic and thermal transport measurements were used to characterize the thermoelectric properties of Yb5M2Sb6 compounds. All samples were found to exhibit similar high p-type carrier concentrations, low resistivity and low Seebeck coefficients in agreement with the band structure calculations. These results, combined with previous studies, suggest that Yb5M2Sb6 compounds are semimetals (i.e., they lack an energy gap between the valence and conduction bands), in contrast to the semiconducting alkaline earth (Ca, Sr, Ba) and Eu based A5M2Sb6 compounds. Yb5M2Sb6 compounds have very low lattice thermal conductivity, comparable to other closely related A5M2Sb6 and A3MSb3 phases. However, due to the semimetallic behaviour, the figure of merit of investigated samples remains low (zT < 0.15).

11.
Dalton Trans ; 43(42): 15872-8, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25226576

RESUMO

Zintl phases are attractive for thermoelectric applications due to their complex structures and bonding environments. The Zintl compounds Ca(5)Al(2)In(x)Sb(6)and Ca(5)Al(2)In(x)Sb(6) have both been shown to have promising thermoelectric properties, with zT values of 0.6 and 0.7, respectively, when doped to control the carrier concentration. Alloying can often be used to further improve thermoelectric materials in cases when the decrease in lattice thermal conductivity outweighs reductions to the electronic mobility. Here we present the high temperature thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6)solid solution. Undoped and optimally Zn-doped samples were investigated. X-ray diffraction confirms that a full solid solution exists between the Al and In end-members. We find that the Al : In ratio does not greatly influence the carrier concentration or Seebeck effect. The primary effect of alloying is thus increased scattering of both charge carriers and phonons, leading to significantly reduced electronic mobility and lattice thermal conductivity at room temperature. Ultimately, the figure of merit is unaffected by alloying in this system, due to the competing effects of reduced mobility and lattice thermal conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA