Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 41(9): 4321-4331, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475052

RESUMO

BACKGROUND/AIM: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are key drugs in cancer treatment due to their minor adverse effects and outstanding anticancer effects. However, drugs for overcoming EGFR-TKI resistance are not in clinical use so far. Therefore, to overcome resistance, we focused on lurasidone, a new antipsychotic drug, due to its mild adverse effect profile from the viewpoint of drug repositioning. MATERIALS AND METHODS: We explored the effects of lurasidone alone or in combination with EGFR-TKI on the growth of osimertinib-resistant cancer cells the anti-apoptotic marker expression such as survivin, and autophagy levels by LC-3B expression. RESULTS: Within a non-toxic concentration range in normal cells, lurasidone and osimertinib combination therapy showed a growth-inhibitory effect in osimertinib-resistant cancer cells in vitro and in vivo. Furthermore, lurasidone decreased survivin expression and mildly induced autophagy. CONCLUSION: Lurasidone may increase the sensitivity to osimertinib in osimertinib-resistant cancer cells in drug repurposing.


Assuntos
Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Cloridrato de Lurasidona/administração & dosagem , Survivina/metabolismo , Células A549 , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Cloridrato de Lurasidona/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Life (Basel) ; 11(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575034

RESUMO

Cancer stem cells (CSCs) have high tumor-initiating capacity and are resistant to chemotherapeutic reagents; thus eliminating CSCs is essential to improving the prognosis. Recently, we reported that dexamethasone increases the effects of gemcitabine on pancreatic CSCs; however, the mechanism involved remains to be fully elucidated. In this study, we explored the role of reactive oxygen species (ROS) in the dexamethasone-induced chemosensitization of CSCs. Dexamethasone increased the growth-inhibitory effects of gemcitabine and 5-fluorouracil, whereas N-acetyl-cysteine, a ROS scavenger, abolished this effect. Although dexamethasone alone did not increase ROS levels, dexamethasone promoted the increase in ROS levels induced by gemcitabine and 5-fluorouracil. Dexamethasone treatment reduced the expression of NRF2, a key regulator of antioxidant responses, which was attenuated by siRNA-mediated knockdown of the glucocorticoid receptor. Furthermore, brusatol, a suppressor of NRF2, sensitized pancreatic CSCs to gemcitabine and 5-fluorouracil. Of note, essentially, the same mechanism was functional in ovarian and colon CSCs treated by the combination of dexamethasone and chemotherapeutic agents. Our study suggests that dexamethasone can sensitize CSCs to chemotherapeutic agents by promoting chemotherapy-induced ROS production through suppressing NRF2 expression.

3.
PLoS One ; 16(3): e0247587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647012

RESUMO

Annual recruitment data of new graduates are manually analyzed by human resources (HR) specialists in industries, which signifies the need to evaluate the recruitment strategy of HR specialists. Different job seekers send applications to companies every year. The relationships between applicants' attributes (e.g., English skill or academic credentials) can be used to analyze the changes in recruitment trends across multiple years. However, most attributes are unnormalized and thus require thorough preprocessing. Such unnormalized data hinder effective comparison of the relationship between applicants in the early stage of data analysis. Thus, a visual exploration system is highly needed to gain insight from the overview of the relationship among applicant qualifications across multiple years. In this study, we propose the Polarizing Attributes for Network Analysis of Correlation on Entities Association (Panacea) visualization system. The proposed system integrates a time-varying graph model and dynamic graph visualization for heterogeneous tabular data. Using this system, HR specialists can interactively inspect the relationships between two attributes of prospective employees across multiple years. Further, we demonstrate the usability of Panacea with representative examples for finding hidden trends in real-world datasets, and we discuss feedback from HR specialists obtained throughout Panacea's development. The proposed Panacea system enables HR specialists to visually explore the annual recruitment of new graduates.


Assuntos
Visualização de Dados , Candidatura a Emprego , Seleção de Pessoal/tendências , Especialização , Recursos Humanos/organização & administração , Educação de Pós-Graduação , Humanos , Japão , Universidades
4.
Neuro Oncol ; 23(6): 945-954, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556172

RESUMO

BACKGROUND: High-grade meningiomas are aggressive tumors with high morbidity and mortality rates that frequently recur even after surgery and adjuvant radiotherapy. However, limited information is currently available on the biology of these tumors, and no alternative adjuvant treatment options exist. Although we previously demonstrated that high-grade meningioma cells were highly sensitive to gemcitabine in vitro and in vivo, the underlying molecular mechanisms remain unknown. METHODS: We examined the roles of hENT1 (human equilibrative nucleoside transporter 1) and dCK (deoxycytidine kinase) in the gemcitabine sensitivity and growth of meningioma cells in vitro. Tissue samples from meningiomas (26 WHO grade I and 21 WHO grade II/III meningiomas) were immunohistochemically analyzed for hENT1 and dCK as well as for Ki-67 as a marker of proliferative activity. RESULTS: hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively, were responsible for the high gemcitabine sensitivity of high-grade meningioma cells and were strongly expressed in high-grade meningiomas. hENT1 expression was required for the proliferation and survival of high-grade meningioma cells and dCK expression. Furthermore, high hENT1 and dCK expression levels correlated with stronger tumor cell proliferative activity and shorter survival in meningioma patients. CONCLUSIONS: The present results suggest that hENT1 is a key molecular factor influencing the growth capacity and gemcitabine sensitivity of meningioma cells and also that hENT1, together with dCK, may be a viable prognostic marker for meningioma patients as well as a predictive marker of their responses to gemcitabine.


Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias Pancreáticas , Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina Quinase/metabolismo , Desoxicitidina Quinase/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico
5.
Genes (Basel) ; 12(1)2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466690

RESUMO

Cancer stem cells (CSCs), having both self-renewal and tumorigenic capacity, utilize an energy metabolism system different from that of non-CSCs. Lipid droplets (LDs) are organelles that store neutral lipids, including triacylglycerol. Previous studies demonstrated that LDs are formed and store lipids as an energy source in some CSCs. LDs play central roles not only in lipid storage, but also as a source of endogenous lipid ligands, which are involved in numerous signaling pathways, including the peroxisome proliferator-activated receptor (PPAR) signaling pathway. However, it remains unclear whether LD-derived signal transduction is involved in the maintenance of the properties of CSCs. We investigated the roles of LDs in cancer stemness using pancreatic and colorectal CSCs and isogenic non-CSCs. PPARα was activated in CSCs in which LDs accumulated, but not in non-CSCs, and pharmacological and genetic inhibition of PPARα suppressed cancer stemness. In addition, inhibition of both re-esterification and lipolysis pathways suppressed cancer stemness. Our study suggested that LD metabolic turnover accompanying PPARα activation is a promising anti-CSC therapeutic target.


Assuntos
Neoplasias Colorretais/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , PPAR alfa/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metabolismo Energético , Células HT29 , Humanos , Gotículas Lipídicas/patologia , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , PPAR alfa/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais
6.
J Biol Chem ; 295(52): 18328-18342, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115754

RESUMO

Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Dexametasona/farmacologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Fosfatase 1 de Especificidade Dupla/genética , Humanos , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Anticancer Res ; 40(9): 4961-4968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878784

RESUMO

BACKGROUND/AIM: Despite advances in treatment modalities, the visual prognosis of retinoblastoma still remains unsatisfactory, underscoring the need to develop novel therapeutic approaches. MATERIALS AND METHODS: The effect on the growth of six human retinoblastoma cell lines and a normal human fibroblast cell line of CEP1347, a small-molecule kinase inhibitor originally developed for the treatment of Parkinson's disease and therefore with a known safety profile in humans, was examined. The role of the P53 pathway in CEP1347-induced growth inhibition was also investigated. RESULTS: CEP1347 selectively inhibited the growth of retinoblastoma cell lines expressing murine double minute 4 (MDM4), a P53 inhibitor. Furthermore, CEP1347 reduced the expression of MDM4 and activated the P53 pathway in MDM4-expressing retinoblastoma cells, which was required for the inhibition of their growth by CEP1347. CONCLUSION: We propose CEP1347 as a promising candidate for the treatment of retinoblastomas, where functional inactivation of P53 as a result of MDM4 activation is reportedly common.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Retinoblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Retinoblastoma/metabolismo , Retinoblastoma/patologia
8.
Biomedicines ; 8(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764319

RESUMO

Osimertinib, which is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, is an important anticancer drug because of its high efficacy and excellent safety profile. However, resistance against osimertinib is inevitable; therefore, therapeutic strategies to overcome the resistance are needed. Doxazosin, a classic quinazoline-based alpha 1-adrenoceptor antagonist is used to treat hypertension and benign prostatic hyperplasia with a known safety profile. The anticancer effects of doxazosin have been examined in various types of malignancies from the viewpoint of drug repositioning or repurposing. However, it currently remains unclear whether doxazosin sensitizes cancer cells to osimertinib. Herein, we demonstrated that doxazosin induced autophagy and enhanced the anticancer effects of osimertinib on the cancer cells and cancer stem cells of non-small cell lung cancer, pancreatic cancer, and glioblastoma at a concentration at which the growth of non-tumor cells was not affected. The osimertinib-sensitizing effects of doxazosin were suppressed by 3-methyladenine, an inhibitor of autophagy, which suggested that the effects of doxazosin were mediated by autophagy. The present study provides evidence for the efficacy of doxazosin as a combination therapy with osimertinib to overcome resistance against osimertinib.

10.
FEBS J ; 287(10): 2023-2036, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31868973

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary brain tumour in adults. Since glioma stem cells (GSCs) are associated with therapeutic resistance as well as the initiation and recurrence in GBM, therapies targeting GSCs are considered to be effective for long-term survival in GBM. Several reports suggested that oxidative phosphorylation (OXPHOS) of cancer stem cells is important for their survival; however, the requirement of OXPHOS in GSCs remains unclear. Few effective and safe agents that target GSC mitochondria are available in clinical settings. In this study, we demonstrated that GSCs had high OXPHOS activity compared with isogenic differentiated GSCs and that GSC survival depended on their OXPHOS activity. Remarkably, we showed that complexes III and IV had broad therapeutic windows and that the expression levels of mitochondrial DNA-coded components of complexes III and IV were elevated in GSCs compared with differentiated GSCs. Moreover, our search of the Food and Drug Administration-approved drugs for those targeting GSC mitochondria revealed that verteporfin (Visudyne® ), a drug approved for macular degeneration, was a novel GSC-specific cytotoxic compound that reduced OXPHOS activity. Importantly, the cytotoxic effect of verteporfin was specific to GSCs without any toxicity to normal cells, and the IC50 of approximately 200 nm was ten times less than its maximum blood concentration in humans. Overall, these findings indicated that high mitochondrial OXPHOS of GSCs is a potential GSC-specific vulnerability and that clinically available drugs, such as verteporfin, might become novel GSC-specific cytotoxic agents.


Assuntos
Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Verteporfina/farmacologia , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancers (Basel) ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614999

RESUMO

Spironolactone, a classical diuretic drug, is used to treat tumor-associated complications in cancer patients. Spironolactone was recently reported to exert anti-cancer effects by suppressing DNA damage repair. However, it currently remains unclear whether spironolactone exerts combinational effects with non-DNA-damaging anti-cancer drugs, such as gemcitabine and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Using the cancer cells of lung cancer, pancreatic cancer, and glioblastoma, the combinational effects of spironolactone with gemcitabine and osimertinib, a third-generation EGFR-TKI, were examined in vitro with cell viability assays. To elucidate the underlying mechanisms, we investigated alterations induced in survivin, an anti-apoptotic protein, by spironolactone as well as the chemosensitization effects of the suppression of survivin by YM155, an inhibitor of survivin, and siRNA. We also examined the combinational effects in a mouse xenograft model. The results obtained revealed that spironolactone augmented cell death and the suppression of cell growth by gemcitabine and osimertinib. Spironolactone also reduced the expression of survivin in these cells, and the pharmacological and genetic suppression of survivin sensitized cells to gemcitabine and osimertinib. This combination also significantly suppressed tumor growth without apparent adverse effects in vivo. In conclusion, spironolactone is a safe candidate drug that exerts anti-cancer effects in combination with non-DNA-damaging drugs, such as gemcitabine and osimertinib, most likely through the suppression of survivin.

12.
Anticancer Res ; 39(9): 4817-4828, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519584

RESUMO

BACKGROUND/AIM: Although epidermal growth factor receptor (EGFR) is frequently activated in lung and pancreatic cancers, the efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs) is limited. Recently, brexpiprazole, an antipsychotic drug, was reported to chemosensitize glioma cells to osimertinib, a third-generation EGFR-TKI, by suppressing survivin, an anti-apoptotic protein, but their combinational effects on lung and pancreatic cancers remain unknown. The aim of this study was to examine the combinational effects of brexpiprazole and osimertinib on lung and pancreatic cancer cells in vitro and in vivo. MATERIALS AND METHODS: YM155, a suppressor of survivin, siRNA, and immunoblot were used to examine the role of survivin in osimertinib-resistance. The effect of drugs on cell viability in vitro was examined by trypan blue staining. The in vivo effects of drugs on tumor growth were examined using a xenograft mouse model. RESULTS: Brexpiprazole exerted combinational effects with osimertinib in vitro. Pharmacological and genetic suppression of survivin chemosensitized the cells to osimertinib. Moreover, the combination of brexpiprazole and osimertinib effectively suppressed tumor growth in a mouse xenograft model. CONCLUSION: Brexpiprazole is a promising drug for lung and pancreatic cancer in combination with osimertinib.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Survivina/genética , Tiofenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 11(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284441

RESUMO

Glioblastoma is a primary brain tumor associated with a poor prognosis due to its high chemoresistance capacity. Cancer stem cells (CSCs) are one of the mechanisms of chemoresistance. Although therapy targeting CSCs is promising, strategies targeting CSCs remain unsuccessful. Abnormal activation of epidermal growth factor receptors (EGFRs) due to amplification, mutation, or both of the EGFR gene is common in glioblastomas. However, glioblastomas are resistant to EGFR tyrosine kinase inhibitors (EGFR-TKIs), and overcoming resistance is essential. Brexpiprazole is a new, safe serotonin-dopamine activity modulator used for schizophrenia and depression that was recently reported to have anti-CSC activity and function as a chemosensitizer. Here, we examined its chemosensitization effects on osimertinib, a third-generation EGFR-TKI with an excellent safety profile, in glioma stem cells (GSCs), which are CSCs of glioblastoma. Brexpiprazole treatment sensitized GSCs to osimertinib and reduced the expression of survivin, an antiapoptotic factor, and the pharmacological and genetic inhibition of survivin mimicked the effects of brexpiprazole. Moreover, co-treatment of brexpiprazole and osimertinib suppressed tumor growth more efficiently than either drug alone without notable toxicity in vivo. This suggests that the combination of brexpiprazole and osimertinib is a potential therapeutic strategy for glioblastoma by chemosensitizing GSCs through the downregulation of survivin expression.

14.
Oncotarget ; 10(37): 3547-3558, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31191825

RESUMO

From the perspective of psycho-oncology, antipsychotics are widely used for patients with cancer. Although some antipsychotic drugs have anti-tumor effects, these antipsychotic drugs are not applicable for cancer patients because of their severe side effects. Brexpiprazole, a novel serotonin-dopamine modulator with an improved side effect profile, was developed as a drug that is structurally and pharmacologically related to aripiprazole, which was reported to have anti-cancer effects. However, it remains unknown whether brexpiprazole has anti-cancer effects. In this study, we examined whether brexpiprazole has anti-tumor effects in cancer cells and cancer stem cells (CSCs) of glioblastoma, pancreatic cancer, and lung cancer. Brexpiprazole suppressed cell growth and induced cell death in the cancer cells and the CSCs, and decreased the CSC properties of the CSCs. Brexpiprazole did not exert any cytotoxic effects on non-cancer cells at the anti-cancer effect-inducing concentration. In the cancer cells and the CSCs, brexpiprazole reduced the expression of survivin, an anti-apoptotic protein, whose reduction sensitizes tumor cells to chemotherapeutic reagents. In the preclinical model in which pancreatic CSCs were subcutaneously implanted into nude mice, brexpiprazole suppressed tumor growth, in addition to reducing the expression of Sox2, a marker for CSCs, and survivin. This suggests that brexpiprazole is a promising antipsychotic drug with anti-tumor effects and an improved safety profile.

15.
Anticancer Res ; 39(2): 609-617, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711936

RESUMO

BACKGROUND/AIM: AS602801, an anti-cancer stem cell (CSC) candidate drug, sensitizes ovarian CSCs to paclitaxel and carboplatin by reducing the expression of survivin, an anti-apoptotic protein. The aim of the study was to examine the effect of AS602801 on the expression of multi drug resistance protein 1 (MDR1). MATERIALS AND METHODS: Using two ovarian CSC lines, A2780 CSLC and TOV-21G CSLC, mechanisms other than survivin down-regulation were examined by comparing the effects of AS602801 and YM155, an inhibitor of survivin. After screening for the expression of ATP-binding cassette (ABC) transporters with or without AS602801 treatment, the sensitivity of cells to paclitaxel, carboplatin, and cisplatin was examined following knockdown of the ABC transporter. RESULTS: The combinational effect of AS602801 on paclitaxel was less dependent on survivin than the effect on carboplatin. AS602801 reduced the expression of MDR1, an ABC transporter. Knockdown of MDR1 sensitized the cells to paclitaxel, but not to carboplatin or cisplatin. CONCLUSION: AS602801 chemosensitized ovarian CSCs to paclitaxel by reducing the expression of MDR1.


Assuntos
Benzotiazóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Carboplatina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Inativação Gênica , Humanos , RNA Interferente Pequeno/metabolismo , Survivina/metabolismo
16.
Microsurgery ; 39(6): 559-562, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30666696

RESUMO

This report presents reconstruction of wide- and full-thickness upper eyelid defects with a composite radial forearm-splitting palmaris longus tendon flap, which maintains eyelid opening and closing functions and supporting tissue in a Meibomian gland carcinoma in the right upper eyelid (case 1) and Merkel cell carcinoma in the right upper eyelid (case 2). After tumor resection with excisional margins, the defects involved the muscle, tarsal, and mucosa, with defect sizes of 60 × 40 mm and 85 × 40 mm, respectively. A radial forearm flap with the palmaris longus tendon was transferred. The tendon was split into two strips: the upper strip was fixed to the frontal muscles for the opening function and the lower strip to the medial palpebral ligament and orbicularis oculi muscle to maintain the closing function. Flap vessels were anastomosed to the superficial temporal artery and vein through the subdermal tunnel. Postoperative courses were uneventful. At the 5-year (case 1) and 4-year (case 2) follow-up periods, there were no tumor recurrence and keratalgia, and the eyelid opening and closing functions were maintained. This approach may contribute to achievement of not only the opening function but also the closing function of the reconstructed eyelid.


Assuntos
Carcinoma de Célula de Merkel/cirurgia , Neoplasias Palpebrais/cirurgia , Pálpebras/cirurgia , Glândulas Tarsais/cirurgia , Tendões/transplante , Alotransplante de Tecidos Compostos Vascularizados/métodos , Idoso , Anastomose Cirúrgica , Pálpebras/irrigação sanguínea , Feminino , Seguimentos , Humanos , Microcirurgia , Reoperação
17.
Anticancer Res ; 38(12): 6699-6706, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504379

RESUMO

BACKGROUND: AS602801, a novel inhibitor of c-Jun N-terminal kinase (JNK), suppresses tumor initiation capacity and metastatic potential of cancer stem cells (CSCs). However, it remains unknown whether this inhibitor can chemosensitize CSCs. MATERIALS AND METHODS: Using A2780 CSLC, a CSC line derived from ovarian cancer, this study examined the combinational effects of AS602801 and carboplatin or paclitaxel and explored the mechanism of those effects. RESULTS: AS602801 chemosensitized A2780 CSLC cells to carboplatin and paclitaxel. With respect to the mechanism of chemosensitization, the expression of survivin, an anti-apoptotic protein, was reduced by AS602801. Pharmacological and genetic inhibition of survivin chemosensitized the cells to carboplatin and paclitaxel. Suppression of survivin by AS602801 was also observed in other types of CSCs and non-CSCs. CONCLUSION: AS602801, which reduces survivin expression, can chemosensitize ovarian CSCs and is a candidate drug that targets the chemoresistance, tumor-initiating capacity and metastasis of CSCs.


Assuntos
Benzotiazóis/farmacologia , Carboplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Pirimidinas/farmacologia , Survivina/genética , Células A549 , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Survivina/metabolismo
18.
Plast Reconstr Surg Glob Open ; 6(9): e1920, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30349789

RESUMO

A case of advanced breast carcinoma with large skin invasion that extended from the breast to the axilla and which was reconstructed with a meshed split skin graft for the chest defect and a posterior circumflex humeral artery perforator flap for the axillary area was described. When skin invasion of the breast cancer extends to the axillary area, reconstruction methods of the defect are probably complicated. The purpose of reconstruction is not only to close defects, but also to protect important tissues, such as axillary vessels and the brachial plexus. Moreover, thinner flaps are preferred to prevent a bulky contour. Many reconstruction methods can be used; however, if total mastectomy causes a large tissue defect from the breast to the axilla involving the subscapular artery, and only limited reconstruction is possible, a posterior circumflex humeral artery perforator flap can be an option to reconstruct the axilla.

19.
Anticancer Res ; 38(9): 5093-5099, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30194154

RESUMO

BACKGROUND/AIM: Cancer stem cells (CSCs) are associated with tumorigenesis, recurrence, and metastasis. Cell-cell communication via gap junctions (GJs) between metastatic cancer cells and astrocytes is necessary for brain metastasis. Agents targeting communication between CSCs and astrocytes are expected to suppress brain metastasis. MATERIALS AND METHODS: Using the A549 CSC, a cancer stem-like cell derived from A549, we examined the effect of AS602801, an anti-cancer stem cell agent whose safety has been confirmed in a phase 2 clinical trial, on GJ communication and connexin expression using a dye-transfer assay and immunoblot analysis, respectively. RESULTS: AS602801 specifically suppressed cell-cell communication in A549 CSCs without any suppression of GJ communication in astrocytes; it also decreased the expression of connexin 43, a constituent of GJs, in A549 CSCs. CONCLUSION: The anti-cancer stem cell agent, AS602801, is a potential drug candidate against brain metastasis.


Assuntos
Astrócitos/citologia , Benzotiazóis/farmacologia , Conexina 43/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/citologia , Pirimidinas/farmacologia , Células A549 , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/prevenção & controle , Comunicação Celular/efeitos dos fármacos , Regulação para Baixo , Junções Comunicantes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Ratos
20.
Oncotarget ; 9(66): 32667-32679, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30220973

RESUMO

Use of epidermal growth factor receptor (EGFR) inhibitors represented by gefitinib and erlotinib has become the standard of treatment for non-small-cell lung cancers (NSCLCs) with activating EGFR mutations. However, the majority of NSCLCs, which overexpress EGFR without such mutations, are resistant to EGFR inhibitors, and the mechanism(s) behind such primary resistance of NSCLCs without activating EGFR mutations to EGFR inhibitors still remains poorly understood. Here in this study, we show that glucose metabolism mediated by GLUT1, a facilitative glucose transporter, is involved in gefitinib resistance of NSCLC cells. We found that GLUT1 expression and glucose uptake were increased in resistant NSCLC cells after gefitinib treatment and that genetic as well as pharmacological inhibition of GLUT1 sensitized not only NSCLC cells with primary resistance but also those with acquired resistance to gefitinib. In vivo, the combination of systemic gefitinib and a GLUT1 inhibitor, both of which failed to inhibit tumor growth when administered alone, significantly inhibited the growth of xenograft tumors formed by the implantation of NSCLC cells with wild-type EGFR (wt-EGFR). Since our data indicated that GLUT1 was similarly involved in erlotinib resistance, our findings suggest that the activity of GLUT1-mediated glucose metabolism could be a critical determinant for the sensitivity of NSCLC cells to EGFR inhibitors and that concurrent GLUT1 inhibition may therefore be a mechanism-based approach to treating NSCLCs resistant to EGFR inhibitors, including those with wt-EGFR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...