Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nat Commun ; 10(1): 4957, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673082

RESUMO

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.

2.
Ann Rheum Dis ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699813

RESUMO

OBJECTIVE: The causality and pathogenic mechanism of microbiome composition remain elusive in many diseases, including autoimmune diseases such as rheumatoid arthritis (RA). This study aimed to elucidate gut microbiome's role in RA pathology by a comprehensive metagenome-wide association study (MWAS). METHODS: We conducted MWAS of the RA gut microbiome in the Japanese population (n case=82, n control=42) by using whole-genome shotgun sequencing of high depth (average 13 Gb per sample). Our MWAS consisted of three major bioinformatic analytic pipelines (phylogenetic analysis, functional gene analysis and pathway analysis). RESULTS: Phylogenetic case-control association tests showed high abundance of multiple species belonging to the genus Prevotella (e.g., Prevotella denticola) in the RA case metagenome. The non-linear machine learning method efficiently deconvoluted the case-control phylogenetic discrepancy. Gene functional assessments showed that the abundance of one redox reaction-related gene (R6FCZ7) was significantly decreased in the RA metagenome compared with controls. A variety of biological pathways including those related to metabolism (e.g., fatty acid biosynthesis and glycosaminoglycan degradation) were enriched in the case-control comparison. A population-specific link between the metagenome and host genome was identified by comparing biological pathway enrichment between the RA metagenome and the RA genome-wide association study results. No apparent discrepancy in alpha or beta diversities of metagenome was found between RA cases and controls. CONCLUSION: Our shotgun sequencing-based MWAS highlights a novel link among the gut microbiome, host genome and pathology of RA, which contributes to our understanding of the microbiome's role in RA aetiology.

3.
Brain ; 142(11): 3473-3481, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608925

RESUMO

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.

4.
Eur J Hum Genet ; 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488892

RESUMO

We performed genome-wide association studies of five gynecologic diseases using data of 46,837 subjects (5236 uterine fibroid, 645 endometriosis, 647 ovarian cancer (OC), 909 uterine endometrial cancer (UEC), and 538 uterine cervical cancer (UCC) cases allowing overlaps, and 39,556 shared female controls) from Biobank Japan Project. We used the population-specific imputation reference panel (n = 3541), yielding 7,645,193 imputed variants. Analyses performed under logistic model, linear mixed model, and model incorporating correlations identified nine significant associations with three gynecologic diseases including four novel findings (rs79219469:C > T, LINC02183, P = 3.3 × 10-8 and rs567534295:C > T, BRCA1, P = 3.1 × 10-8 with OC, rs150806792:C > T, INS-IGF2, P = 4.9 × 10-8 and rs140991990:A > G, SOX9, P = 3.3 × 10-8 with UCC). Random-effect meta-analysis of the five GWASs correcting for the overlapping subjects suggested one novel shared risk locus (rs937380553:A > G, LOC730100, P = 2.0 × 10-8). Reverse regression analysis identified three additional novel associations (rs73494486:C > T, GABBR2, P = 4.8 × 10-8, rs145152209:A > G, SH3GL3/BNC1, P = 3.3 × 10-8, and rs147427629:G > A, LOC107985484, P = 3.8 × 10-8). Estimated heritability ranged from 0.026 for OC to 0.220 for endometriosis. Genetic correlations were relatively strong between OC and UEC, endometriosis and OC, and uterine fibroid and OC (rg > 0.79) compared with relatively weak correlations between UCC and the other four (rg = -0.08 ~ 0.25). We successfully identified genetic associations with gynecologic diseases in the Japanese population. Shared genetic effects among multiple related diseases may help understanding the pathophysiology.

5.
Nat Commun ; 10(1): 4393, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562340

RESUMO

Human height is a representative phenotype to elucidate genetic architecture. However, the majority of large studies have been performed in European population. To investigate the rare and low-frequency variants associated with height, we construct a reference panel (N = 3,541) for genotype imputation by integrating the whole-genome sequence data from 1,037 Japanese with that of the 1000 Genomes Project, and perform a genome-wide association study in 191,787 Japanese. We report 573 height-associated variants, including 22 rare and 42 low-frequency variants. These 64 variants explain 1.7% of the phenotypic variance. Furthermore, a gene-based analysis identifies two genes with multiple height-increasing rare and low-frequency nonsynonymous variants (SLC27A3 and CYP26B1; PSKAT-O < 2.5 × 10-6). Our analysis shows a general tendency of the effect sizes of rare variants towards increasing height, which is contrary to findings among Europeans, suggesting that height-associated rare variants are under different selection pressure in Japanese and European populations.

6.
Eur J Hum Genet ; 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558841

RESUMO

The functional variants involved in alcohol metabolism, the A allele of rs1229984:A > G in ADH1B and the A allele of rs671:G > A in ALDH2, are specifically prevalent among East Asian population. They are shown to be under recent positive selection, but the reasons for the selection are unknown. To test whether these positively selected variants have beneficial effects on survival in modern population, we performed the survival analyses using the large-scale Japanese cohort (n = 135,974) with genotype and follow-up survival data. The rs671-A allele was significantly associated with the better survival in the additive model (HR for mortality = 0.960, P = 1.7 × 10-5), and the rs1229984-A had both additive and non-additive effects (HR = 0.962, P = 0.0016 and HR = 0.958, P = 0.0066, respectively), which was consistent with the positive selection. The favorable effects of these alleles on survival were independent of the habit of alcohol consumption itself. The heterogenous combinatory effect between rs1229984 and rs671 genotype was also observed (HRs for AA genotype at rs671 were 1.03, 0.80, and 0.90 for GG, GA, and AA genotype at rs1229984, respectively), supposedly reflecting the synergistic effects on survival.

7.
Nucl Med Commun ; 40(11): 1148-1153, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31469804

RESUMO

OBJECTIVE: The aim of this study was to compare the diagnostic precision of bone scintigraphy with BONENAVI version 1 and BONENAVI version 2 in bone metastasis of primary breast cancer. METHODS: The subjects were 56 consecutive patients (all women, mean age 59 ± 12.7 years) who underwent bone scintigraphy with Tc-MDP and were diagnosed with bone metastasis of primary breast cancer from January 2012 to November 2014. Bone scintigraphy was performed with BONENAVI version 1 and BONENAVI version 2 to calculate artificial neural network (ANN), bone scan index (BSI), and hot-spot values, with ANN ≥ 0.5 considered to reflect bone metastasis for the calculation of sensitivity. Mean ANN, BSI, hot-spot values, and sensitivity were compared between BONENAVI version 1 and BONENAVI version 2, with P < 0.05 considered a significant difference. RESULTS: With BONENAVI version 1, mean ANN was 0.73 ± 0.29, BSI was 1.47 ± 1.85, the hot-spot value was 12.4 ± 12.5, and sensitivity was 76.8% (43/56). With BONENAVI version 2, the mean ANN was 0.86 ± 0.19, BSI was 1.53 ± 2.09, hot-spot value was 12.9 ± 15.6, and sensitivity was 94.6% (53/56). BONENAVI version 2 yielded significantly better ANN and sensitivity than BONENAVI version 1 (both P < 0.01). CONCLUSION: BONENAVI version 2 has improved sensitivity for detecting bone metastasis of primary breast cancer compared to BONENAVI version 1.

8.
J Neuroinflammation ; 16(1): 162, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382992

RESUMO

BACKGROUND: The spectrum of classical and non-classical HLA genes related to the risk of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) in the Japanese population has not been studied in detail. We conducted a case-control analysis of classical and non-classical HLA genes. METHODS: We used next-generation sequencing (NGS)-based HLA genotyping methods for mapping risk for 45 MS patients, 31 NMOSD patients, and 429 healthy controls. We evaluated the association of the HLA variants with the risk of MS and NMOSD using logistic regression analysis and Fisher's exact test. RESULTS: We confirmed that HLA-DRB1*15:01 showed the strongest association with MS (P = 2.1 × 10-5; odds ratio [OR] = 3.44, 95% confidence interval [95% CI] = 1.95-6.07). Stepwise conditional analysis identified HLA-DRB1*04:05, HLA-B*39:01, and HLA-B*15:01 as being associated with independent MS susceptibility (PConditional < 8.3 × 10-4). With respect to amino acid polymorphisms in HLA genes, we found that phenylalanine at HLA-DQß1 position 9 had the strongest effect on MS susceptibility (P = 3.7 × 10-8, OR = 3.48, 95% CI = 2.23-5.43). MS risk at HLA-DQß1 Phe9 was independent of HLA-DRB1*15:01 (PConditional = 1.5 × 10-5, OR = 2.91, 95% CI = 1.79-4.72), while HLA-DRB1*15:01 was just significant when conditioned on HLA-DQß1 Phe9 (PConditional = 0.037). Regarding a case-control analysis for NMOSD, HLA-DQA1*05:03 had a significant association with NMOSD (P = 1.5 × 10-4, OR = 6.96, 95% CI = 2.55-19.0). CONCLUSIONS: We identified HLA variants associated with the risk of MS and NMOSD. Our study contributes to the understanding of the genetic architecture of MS and NMOSD in the Japanese population.

9.
J Allergy Clin Immunol ; 144(5): 1354-1363, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31301374

RESUMO

BACKGROUND: Food allergy is a growing health problem worldwide because of its increasing prevalence, life-threatening potential, and shortage of effective preventive treatments. In an outbreak of wheat allergy in Japan, thousands of patients had allergic reactions to wheat after using soap containing hydrolyzed wheat protein (HWP). OBJECTIVES: The aim of the present study was to investigate genetic variation that can contribute to susceptibility to HWP allergy. METHODS: We conducted a genome-wide association study of HWP allergy in 452 cases and 2700 control subjects using 6.6 million genotyped or imputed single nucleotide polymorphisms. Replication was assessed by genotyping single nucleotide polymorphisms in independent samples comprising 45 patients with HWP allergy and 326 control subjects. RESULTS: Through the genome-wide association study, we identified significant associations with the class II HLA region on 6p21 (P = 2.16 × 10-24 for rs9271588 and P = 2.96 × 10-24 for HLA-DQα1 amino acid position 34) and with the RBFOX1 locus at 16p13 (rs74575857, P = 8.4 × 10-9). The associations were also confirmed in the replication data set. Both amino acid polymorphisms (HLA-DQß1 amino acid positions 13 and 26) located in the P4 binding pockets on the HLA-DQ molecule achieved the genome-wide significance level (P < 5.0 × 10-8). CONCLUSIONS: Our data provide the first demonstration of genetic risk for HWP allergy and show that this genetic risk is mainly represented by multiple combinations of HLA variants.

10.
Ann Rheum Dis ; 78(10): 1430-1437, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31289104

RESUMO

OBJECTIVE: The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS: We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS: This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10- 8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS: This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.

11.
Eur J Hum Genet ; 27(11): 1745-1756, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31296926

RESUMO

Interpreting the susceptible loci documented by genome-wide association studies (GWASs) is of utmost importance in the post-GWAS era. Since most complex traits are contributed by multiple tissues, analyzing tissue-specific effects of expression quantitative trait loci (eQTLs) is a promising approach. Here we describe "opposite eQTL effects", i.e., gene expression effects of eQTLs that are in the opposite direction between different tissues, as the biologically meaningful annotations of genes and genetic variants for understanding the GWAS loci. The genes and single-nucleotide polymorphisms (SNPs) associated with the opposite eQTL effects (opp-multi-eQTL-Genes and opp-multi-eQTL-SNPs) were extracted from the largest eQTL database provided by the Genotype-Tissue Expression (GTEx) project (release version 7). The opposite eQTL effects were detected even between closely related tissues such as cerebellum and brain cortex, and a significant proportion of the genes having eQTLs were annotated as the opp-multi-eQTL-Genes (2,323 out of 31,212; 7.4%). The opp-multi-eQTL-SNPs showed locational enrichment at the transcription start site and also possible involvement of epigenetic regulation. The biological importance of the opposite eQTL effects was also assessed using the SNPs reported in GWASs (GWAS-SNPs), which demonstrated that a high proportion of the opp-multi-eQTL-SNPs are in linkage disequilibrium with the GWAS-SNPs (2,498 out of 9,290; 26.9%). Based on the results, the opposite eQTL effects can be a common phenomenon in the tissue-specific gene regulation with a possible contribution to the development of complex traits.

13.
Nat Commun ; 10(1): 2773, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235808

RESUMO

Dental caries and periodontitis account for a vast burden of morbidity and healthcare spending, yet their genetic basis remains largely uncharacterized. Here, we identify self-reported dental disease proxies which have similar underlying genetic contributions to clinical disease measures and then combine these in a genome-wide association study meta-analysis, identifying 47 novel and conditionally-independent risk loci for dental caries. We show that the heritability of dental caries is enriched for conserved genomic regions and partially overlapping with a range of complex traits including smoking, education, personality traits and metabolic measures. Using cardio-metabolic traits as an example in Mendelian randomization analysis, we estimate causal relationships and provide evidence suggesting that the processes contributing to dental caries may have undesirable downstream effects on health.


Assuntos
Cárie Dentária/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Periodontite/genética , Cárie Dentária/epidemiologia , Genômica , Hereditariedade , Humanos , Análise da Randomização Mendeliana , Periodontite/epidemiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Autorrelato/estatística & dados numéricos
14.
Ann Neurol ; 86(2): 193-202, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155743

RESUMO

OBJECTIVE: Cytochrome c oxidase (COX) deficiency is a major mitochondrial respiratory chain defect that has vast genetic and phenotypic heterogeneity. This study aims to identify novel causative genes of COX deficiency with only striated muscle-specific symptoms. METHODS: Whole exome sequencing was performed in 2 unrelated individuals who were diagnosed with congenital myopathy and presented COX deficiency in muscle pathology. We assessed the COX6A2 variants using measurements of enzymatic activities and assembly of mitochondrial respiratory chain complexes in the samples from the patients and knockout mice. RESULTS: Both patients presented muscle weakness and hypotonia in 4 limbs along with facial muscle weakness. One patient had cardiomyopathy. Neither patient exhibited involvement from other organs. Whole exome sequencing identified biallelic missense variants in COX6A2, which is expressed only in the skeletal muscle and heart. The variants detected were homozygous c.117C > A (p.Ser39Arg) and compound heterozygous c.117C > A (p.Ser39Arg) and c.127T > C (p.Cys43Arg). We found specific reductions in complex IV activities in the skeletal muscle of both individuals. Assembly of complex IV and its supercomplex formation were impaired in the muscle. INTERPRETATION: This study indicates that biallelic variants in COX6A2 cause a striated muscle-specific form of COX deficiency. ANN NEUROL 2019;86:193-202.

15.
Front Immunol ; 10: 1066, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164884

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component. We recently identified a novel SLE susceptibility locus near RASGRP1, which governs the ERK/MAPK kinase cascade and B-/T-cell differentiation and development. However, precise causal RASGRP1 functional variant(s) and their mechanisms of action in SLE pathogenesis remain undefined. Our goal was to fine-map this locus, prioritize genetic variants likely to be functional, experimentally validate their biochemical mechanisms, and determine the contribution of these SNPs to SLE risk. We performed a meta-analysis across six Asian and European cohorts (9,529 cases; 22,462 controls), followed by in silico bioinformatic and epigenetic analyses to prioritize potentially functional SNPs. We experimentally validated the functional significance and mechanism of action of three SNPs in cultured T-cells. Meta-analysis identified 18 genome-wide significant (p < 5 × 10-8) SNPs, mostly concentrated in two haplotype blocks, one intronic and the other intergenic. Epigenetic fine-mapping, allelic, eQTL, and imbalance analyses predicted three transcriptional regulatory regions with four SNPs (rs7170151, rs11631591-rs7173565, and rs9920715) prioritized for functional validation. Luciferase reporter assays indicated significant allele-specific enhancer activity for intronic rs7170151 and rs11631591-rs7173565 in T-lymphoid (Jurkat) cells, but not in HEK293 cells. Following up with EMSA, mass spectrometry, and ChIP-qPCR, we detected allele-dependent interactions between heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and rs11631591. Furthermore, inhibition of hnRNP-K in Jurkat and primary T-cells downregulated RASGRP1 and ERK/MAPK signaling. Comprehensive association, bioinformatics, and epigenetic analyses yielded putative functional variants of RASGRP1, which were experimentally validated. Notably, intronic variant (rs11631591) is located in a cell type-specific enhancer sequence, where its risk allele binds to the hnRNP-K protein and modulates RASGRP1 expression in Jurkat and primary T-cells. As risk allele dosage of rs11631591 correlates with increased RASGRP1 expression and ERK activity, we suggest that this SNP may underlie SLE risk at this locus.

16.
Nat Hum Behav ; 3(5): 471-477, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31089300

RESUMO

Cigarette smoking is a risk factor for a wide range of human diseases1. To investigate the genetic components associated with smoking behaviours in the Japanese population, we conducted a genome-wide association study of four smoking-related traits using up to 165,436 individuals. In total, we identified seven new loci, including three loci associated with the number of cigarettes per day (EPHX2-CLU, RET and CUX2-ALDH2), three loci associated with smoking initiation (DLC1, CXCL12-TMEM72-AS1 and GALR1-SALL3) and LINC01793-MIR4432HG, associated with the age of smoking initiation. Of these, three loci (LINC01793-MIR4432HG, CXCL12-TMEM72-AS1 and GALR1-SALL3) were found by conducting an additional sex-stratified genome-wide association study. This additional analysis showed heterogeneity of effects between sexes. The cross-sex linkage disequilibrium score regression2,3 analysis also indicated that the genetic component of smoking initiation was significantly different between the sexes. Cross-trait linkage disequilibrium score regression analysis and trait-relevant tissue analysis showed that the number of cigarettes per day has a specific genetic background distinct from those of the other three smoking behaviours. We also report 11 diseases that share genetic basis with smoking behaviours. Although the current study should be carefully considered owing to the lack of replication samples, our findings characterized the genetic architecture of smoking behaviours. Further studies in East Asian populations are warranted to confirm our findings.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Fumar Cigarros/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Loci Gênicos , Pleiotropia Genética/genética , Humanos , Japão , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Abandono do Hábito de Fumar , Adulto Jovem
17.
Ann Rheum Dis ; 78(8): 1055-1061, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31036624

RESUMO

OBJECTIVES: We sought to investigate whether genetic effects on response to TNF inhibitors (TNFi) in rheumatoid arthritis (RA) could be localised by considering known genetic susceptibility loci for relevant traits and to evaluate the usefulness of these genetic loci for stratifying drug response. METHODS: We studied the relation of TNFi response, quantified by change in swollen joint counts ( Δ SJC) and erythrocyte sedimentation rate ( Δ ESR) with locus-specific scores constructed from genome-wide assocation study summary statistics in 2938 genotyped individuals: 37 scores for RA; scores for 19 immune cell traits; scores for expression or methylation of 93 genes with previously reported associations between transcript level and drug response. Multivariate associations were evaluated in penalised regression models by cross-validation. RESULTS: We detected a statistically significant association between Δ SJC and the RA score at the CD40 locus (p=0.0004) and an inverse association between Δ SJC and the score for expression of CD39 on CD4 T cells (p=0.00005). A previously reported association between CD39 expression on regulatory T cells and response to methotrexate was in the opposite direction. In stratified analysis by concomitant methotrexate treatment, the inverse association was stronger in the combination therapy group and dissipated in the TNFi monotherapy group. Overall, ability to predict TNFi response from genotypic scores was limited, with models explaining less than 1% of phenotypic variance. CONCLUSIONS: The association with the CD39 trait is difficult to interpret because patients with RA are often prescribed TNFi after failing to respond to methotrexate. The CD39 and CD40 pathways could be relevant for targeting drug therapy.

18.
PLoS Genet ; 15(4): e1008092, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022184

RESUMO

Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.


Assuntos
Sequência de Aminoácidos , Autoanticorpos/imunologia , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Alelos , Substituição de Aminoácidos , Grupo com Ancestrais do Continente Asiático , Feminino , Predisposição Genética para Doença , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único
19.
Am J Hum Genet ; 104(5): 879-895, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006511

RESUMO

Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies regulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high accuracy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA) summary statistics from European (N = 38,242) and East Asian (N = 22,515) populations revealed that the top 5% of CD4+ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by compared CD4+ T histone marks is 42.3% and by CD4+ T specifically expressed gene sets is 36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.

20.
Commun Biol ; 2: 115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993211

RESUMO

Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10-8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci-TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A-are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA