Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Hum Mol Genet ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527138

RESUMO

Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained two-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance, and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.

2.
Int J Immunogenet ; 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480472

RESUMO

The etiopathogenesis of rheumatoid arthritis is partially understood; however, it is believed to result from a multi-step process. The immune onset followed by pre-clinical phases will eventually lead to the development of symptomatic disease. We aim at identifying differentially expressed genes in order to highlight pathways involved in the pre-clinical stages of rheumatoid arthritis development. The study population consisted of first-degree relatives of patients with rheumatoid arthritis, known to have an increased risk of developing disease as compared to the general population. Whole transcriptome analysis was performed in four groups: asymptomatic without autoantibodies or symptoms associated with possible rheumatoid arthritis (controls); having either clinically suspect arthralgias, undifferentiated arthritis or autoimmunity associated with RA (pre-clinical stages of RA: Pcs-RA); having subsequently developed classifiable RA (pre-RA); and early untreated rheumatoid arthritis patients (RA). Differentially expressed genes were determined, and enrichment analysis was performed. Functional enrichment analysis revealed 31 pathways significantly enriched in differentially expressed genes for Pcs-RA, pre-RA and RA compared to the controls. Osteoclast pathway is among the seven pathways specific for RA. In Pcs-RA and in pre-RA, several enriched pathways include TP53 gene connections, such as P53 and Wnt signalling pathways. Analysis of whole transcriptome for phenotypes related to rheumatoid arthritis allows highlighting which pathways are requested in the pre-clinical stages of disease development. After validation in replication studies, molecules belonging to some of these pathways could be used to identify new specific biomarkers for individuals with impending rheumatoid arthritis.

3.
Nat Genet ; 52(12): 1364-1372, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230297

RESUMO

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.

4.
Int J Cancer ; 147(11): 3119-3129, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506468

RESUMO

Over the past two decades, several studies have attempted to understand the hypothesis that disrupting the circadian rhythm may promote the development of cancer. Some have suggested that night work and some circadian genes polymorphisms are associated with cancer, including prostate cancer. Our study aims to test the hypothesis that prostate cancer risk among night workers may be modulated by genetic polymorphisms in the circadian pathway genes based on data from the EPICAP study, a population-based case-control study including 1511 men (732 cases/779 controls) with genotyped data. We estimated odds ratio (ORs) and P values of the association between prostate cancer and circadian gene variants using logistic regression models. We tested the interaction between circadian genes variants and night work indicators that were significantly associated with prostate cancer at pathway, gene and SNP levels. Analyses were also stratified by each of these night work indicators and by cancer aggressiveness. The circadian pathway was significantly associated with aggressive prostate cancer among night workers (P = .004), particularly for men who worked at night for <20 years (P = .0002) and those who performed long night shift (>10 hours, P = .001). At the gene level, we observed among night workers significant associations between aggressive prostate cancer and ARNTL, NPAS2 and RORA. At the SNP-level, no significant association was observed. Our findings provide some clues of a potential modulating effect of circadian genes in the relationship between night work and prostate cancer. Further investigation is warranted to confirm these findings and to better elucidate the biological pathways involved.

5.
Mov Disord ; 35(8): 1336-1345, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32506582

RESUMO

OBJECTIVE: Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS: After the identification of a deletion upstream of SLC20A2, we assessed its consequences on gene function by reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), an ex vivo inorganic phosphate uptake assay, and introduced the deletion of a putative SLC20A2 enhancer mapping to this region in human embryonic kidney 293 (HEK293) cells by clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9). RESULTS: The 8p11.21 deletion, segregating with PFBC in a family, mapped 35 kb upstream of SLC20A2. The deletion carriers/normal controls ratio of relative SLC20A2 mRNA levels was 60.2% (P < 0.001). This was comparable with that of patients carrying an SLC20A2 premature stop codon (63.4%; P < 0.001). The proband exhibited a 39.3% decrease of inorganic phosphate uptake in blood (P = 0.015). In HEK293 cells, we observed a 39.8% decrease in relative SLC20A2 mRNA levels after normalization on DNA copy number (P < 0.001). DISCUSSION: We identified a deletion of an enhancer of SLC20A2 expression, with carriers showing haploinsufficiency in similar ranges to loss-of-function alleles, and we observed reduced mRNA levels after deleting this element in a cellular model. We propose a 3-step strategy to identify and easily assess the effect of such events. © 2020 International Parkinson and Movement Disorder Society.

6.
Clin Sci (Lond) ; 134(10): 1181-1190, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32426810

RESUMO

Autosomal dominant inherited Protein S deficiency (PSD) (MIM 612336) is a rare disorder caused by rare mutations, mainly located in the coding sequence of the structural PROS1 gene, and associated with an increased risk of venous thromboembolism. To identify the molecular defect underlying PSD observed in an extended French pedigree with seven PSD affected members in whom no candidate deleterious PROS1 mutation was detected by Sanger sequencing of PROS1 exons and their flanking intronic regions or via an multiplex ligation-dependent probe amplification (MLPA) approach, a whole genome sequencing strategy was adopted. This led to the identification of a never reported C to T substitution at c.-39 from the natural ATG codon of the PROS1 gene that completely segregates with PSD in the whole family. This substitution ACG→ATG creates a new start codon upstream of the main ATG. We experimentally demonstrated in HeLa cells that the variant generates a novel overlapping upstream open reading frame (uORF) and inhibits the translation of the wild-type PS. This work describes the first example of 5'UTR PROS1 mutation causing PSD through the creation of an uORF, a mutation that is not predicted to be deleterious by standard annotation softwares, and emphasizes the need for better exploration of such type of non-coding variations in clinical genomics.


Assuntos
Regiões 5' não Traduzidas/genética , Códon de Iniciação/genética , Mutação/genética , Biossíntese de Proteínas , Deficiência de Proteína S/genética , Proteína S/genética , Sequência de Bases , Feminino , Células HeLa , Humanos , Masculino , Linhagem , Adulto Jovem
7.
Transl Psychiatry ; 10(1): 77, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094338

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component whose knowledge evolves quickly. Next-generation sequencing is the only effective technology to deal with the high genetic heterogeneity of ASD in a clinical setting. However, rigorous criteria to classify rare genetic variants conferring ASD susceptibility are currently lacking. We have performed whole-exome sequencing to identify both nucleotide variants and copy number variants (CNVs) in 253 ASD patients, including 68 patients with intellectual disability (ID) and 90 diagnosed as Asperger syndrome. Using explicit criteria to classify both susceptibility genes and susceptibility variants we prioritized 217 genes belonging to the following categories: syndromic genes, genes with an excess of de novo protein truncating variants and genes targeted by rare CNVs. We obtained a susceptibility variant detection rate of 19.7% (95% CI: [15-25.2%]). The rate for CNVs was 7.1% (95% CI: [4.3-11%]) and 12.6% (95% CI: [8.8-17.4%]) for nucleotide variants. The highest rate (30.1%, 95% CI: [20.2-43.2%]) was obtained in the ASD + ID subgroup. A strong contributor for at risk nucleotide variants was the recently identified set of genes (n = 81) harboring an excess of de novo protein truncating variants. Since there is currently no evidence that the genes targeted here are necessary and sufficient to cause ASD, we recommend to avoid the term "causative of ASD" when delivering the information about a variant to a family and to use instead the term "genetic susceptibility factor contributing to ASD".

8.
Mol Genet Genomic Med ; 8(3): e1114, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31985172

RESUMO

BACKGROUND: Structural variants (SVs) include copy number variants (CNVs) and apparently balanced chromosomal rearrangements (ABCRs). Genome sequencing (GS) enables SV detection at base-pair resolution, but the use of short-read sequencing is limited by repetitive sequences, and long-read approaches are not yet validated for diagnosis. Recently, 10X Genomics proposed Chromium, a technology providing linked-reads to reconstruct long DNA fragments and which could represent a good alternative. No study has compared short-read to linked-read technologies to detect SVs in a constitutional diagnostic setting yet. The aim of this work was to determine whether the 10X Genomics technology enables better detection and comprehension of SVs than short-read WGS. METHODS: We included 13 patients carrying various SVs. Whole genome analyses were performed using paired-end HiSeq X sequencing with (linked-read strategy) or without (short-read strategy) Chromium library preparation. Two different bioinformatic pipelines were used: Variants are called using BreakDancer for short-read strategy and LongRanger for long-read strategy. Variant interpretations were first blinded. RESULTS: The short-read strategy allowed diagnosis of known SV in 10/13 patients. After unblinding, the linked-read strategy identified 10/13 SVs, including one (patient 7) missed by the short-read strategy. CONCLUSION: In conclusion, regarding the results of this study, 10X Genomics solution did not improve the detection and characterization of SV.

9.
Genet Med ; 22(3): 547-556, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31649276

RESUMO

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.

10.
Blood ; 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33512453

RESUMO

Genetic risk score (GRS) analysis is an increasingly popular approach to derive individual risk prediction models for complex diseases. In the context of venous thrombosis (VT), any GRS shall integrate information at the ABO blood group locus, the latter being one of the major susceptibility locus for this disease. However, there is yet no consensus about which single nucleotide polymorphisms (SNPs) must be investigated when one is interested in properly assessing the association of ABO locus with VT risk. Using comprehensive haplotype analyses of ABO blood group tagging SNPs in up to 5,425 cases and 8,445 controls from 6 studies, we demonstrated that using only rs8176719 (tagging O1) to correctly assess the impact of ABO locus on VT risk is suboptimal as 5% of rs8176719-delG carriers are not exposed at higher VT risk. Instead, we recommend to use 4 SNPs, rs2519093 (tagging A1), rs1053878 (A2), rs8176743 (B) and rs41302905 (O2) in any analysis aimed at assessing the impact of ABO locus on VT risk to avoid any risk misestimation. Compared to O1 haplotype that can be inferred from these 4 SNPs, the A2 haplotype is associated with a modest increase in VT risk (odds ratio ~1.2), A1 and B haplotypes are associated with a ~1.8 fold increased risk while O2 tend to be slightly protective (odds ratio ~0.80). In addition, our analyses clearly showed that while the A1 an B blood group are associated with increased vWF and FVIII plasma levels only the A1 blood group is associated wih ICAM plasma levels but in an opposite direction, leaving additional avenues to be explored in order to fully understand the whole spectrum of biological effect of ABO locus on cardiovascular traits.

11.
J Cell Sci ; 132(16)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31371485

RESUMO

Expression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action. Transcription of the EGR1 gene is activated by the RAF-MEK-ERK MAPK pathway and acts as a sensor of hyper-mitogenic pathway activity. The EGR1 transcription factor regulates the expression of p15 and p21 (encoded by CDKN2B and CDKN1A, respectively) that are redundantly required for the proliferative arrest of BJ fibroblasts upon expression of B-RAF-V600E. Our results highlight the need to evaluate the action of glucocorticoid on cancer progression in melanoma, thyroid and colon carcinoma in which B-RAF-V600E is a frequent oncogene, and cancers in which evasion from senescence has been shown.


Assuntos
Senescência Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/metabolismo , Glucocorticoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15 , Inibidor de Quinase Dependente de Ciclina p21 , Proteína 1 de Resposta de Crescimento Precoce/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/genética
13.
Sci Rep ; 9(1): 7550, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101892

RESUMO

High-throughput RNA-sequencing has become the gold standard method for whole-transcriptome gene expression analysis, and is widely used in numerous applications to study cell and tissue transcriptomes. It is also being increasingly used in a number of clinical applications, including expression profiling for diagnostics and alternative transcript detection. However, despite its many advantages, RNA sequencing can be challenging in some situations, for instance in cases of low input amounts or degraded RNA samples. Several protocols have been proposed to overcome these challenges, and many are available as commercial kits. In this study, we systematically test three recent commercial technologies for RNA-seq library preparation (TruSeq, SMARTer and SMARTer Ultra-Low) on human biological reference materials, using standard (1 mg), low (100 ng and 10 ng) and ultra-low (<1 ng) input amounts, and for mRNA and total RNA, stranded and unstranded. The results are analyzed using read quality and alignment metrics, gene detection and differential gene expression metrics. Overall, we show that the TruSeq kit performs well with an input amount of 100 ng, while the SMARTer kit shows decreased performance for inputs of 100 and 10 ng, and the SMARTer Ultra-Low kit performs relatively well for input amounts <1 ng. All the results are discussed in detail, and we provide guidelines for biologists for the selection of an RNA-seq library preparation kit.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Transcriptoma/genética , Sequenciamento Completo do Exoma/métodos , Humanos , RNA Mensageiro/genética , Kit de Reagentes para Diagnóstico
14.
Nat Genet ; 51(3): 414-430, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30820047

RESUMO

Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aß processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10-7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Imunidade/genética , Lipídeos/genética , Proteínas tau/genética , Idoso , Estudos de Casos e Controles , Feminino , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Humanos , Metabolismo dos Lipídeos/genética , Masculino
15.
PLoS One ; 14(3): e0213387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845214

RESUMO

The triggering and development of Rheumatoid Arthritis (RA) is conditioned by environmental and genetic factors. Despite the identification of more than one hundred genetic variants associated with the disease, not all the cases can be explained. Here, we performed Whole Exome Sequencing in 9 multiplex families (N = 30) to identify rare variants susceptible to play a role in the disease pathogenesis. We pre-selected 77 genes which carried rare variants with a complete segregation with RA in the studied families. Follow-up linkage and association analyses with pVAAST highlighted significant RA association of 43 genes (p-value < 0.05 after 106 permutations) and pinpointed their most likely causal variant. We re-sequenced the 10 most significant likely causal variants (p-value ≤ 3.78*10-3 after 106 permutations) in the extended pedigrees and 9 additional multiplex families (N = 110). Only one SNV in SUPT20H: c.73A>T (p.Lys25*), presented a complete segregation with RA in an extended pedigree with early-onset cases. In summary, we identified in this study a new variant associated with RA in SUPT20H gene. This gene belongs to several biological pathways like macro-autophagy and monocyte/macrophage differentiation, which contribute to RA pathogenesis. In addition, these results showed that analyzing rare variants using a family-based approach is a strategy that allows to identify RA risk loci, even with a small dataset.


Assuntos
Artrite Reumatoide/genética , Códon sem Sentido/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição/genética , Adulto , Autofagia/genética , Diferenciação Celular/genética , Exoma/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Macrófagos/fisiologia , Masculino , Monócitos/fisiologia , Linhagem , Sequenciamento Completo do Exoma/métodos
16.
Clin Exp Rheumatol ; 37(6): 923-928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873943

RESUMO

OBJECTIVES: Copy number variants (CNVs) could explain a part of the missing heritability in rheumatoid arthritis (RA). Our goal is to investigate the association of RA with CNVs of three functional candidate genes, Glutathione S-transferase M1 (GSTM1), Glutathione S-transferase T1 (GSTT1) and Fcγ receptor type IIIAB (FCGR3B). METHODS: We quantified the absolute copy number of GSTM1, GSTT1 and FCGR3B genes using droplet digital PCR. Transmission of copy number alleles was investigated in trio families with RA using family-based association tests (Transmission Disequilibrium Test and Genotype Haplotype Relative Risk). Clinical, environmental and biological data on RA patients were also used to stratify patients sample in analysis. RESULTS: Copy numbers from zero to three were identified. Genotype combinations characterised in 182 trios allowed testing the association with RA. Genotypes without null allele of FCGR3B gene were significantly associated with RA (3.41x10-7). Three copy numbers of this gene is observed only in cases of RA (n=14) and a protective effect of null allele was characterised (OR=0.3 (0.17-0.53)). CONCLUSIONS: CNVs in FCGR3B are associated with RA in our set of samples. This gene may play a role in physiopathology of this disease.


Assuntos
Artrite Reumatoide , Variações do Número de Cópias de DNA/genética , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Artrite Reumatoide/genética , Biomarcadores , Dosagem de Genes , Predisposição Genética para Doença/genética , Genótipo , Glutationa Transferase , Humanos , Reação em Cadeia da Polimerase/métodos , Receptores de IgG
17.
Genet Epidemiol ; 43(4): 449-457, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659681

RESUMO

Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.


Assuntos
Exoma/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise em Microsséries/métodos , Tromboembolia Venosa/genética , Afro-Americanos/genética , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Razão de Chances , Polimorfismo de Nucleotídeo Único , Tamanho da Amostra , Tromboembolia Venosa/etnologia
18.
Int J Cancer ; 144(8): 1962-1974, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30303537

RESUMO

Pathogenic variants in BRCA1 and BRCA2 only explain the underlying genetic cause of about 10% of hereditary breast and ovarian cancer families. Because of cost-effectiveness, multigene panel testing is often performed even if the clinical utility of testing most of the genes remains questionable. The purpose of our study was to assess the contribution of rare, deleterious-predicted variants in DNA repair genes in familial breast cancer (BC) in a well-characterized and homogeneous population. We analyzed 113 DNA repair genes selected from either an exome sequencing or a candidate gene approach in the GENESIS study, which includes familial BC cases with no BRCA1 or BRCA2 mutation and having a sister with BC (N = 1,207), and general population controls (N = 1,199). Sequencing data were filtered for rare loss-of-function variants (LoF) and likely deleterious missense variants (MV). We confirmed associations between LoF and MV in PALB2, ATM and CHEK2 and BC occurrence. We also identified for the first time associations between FANCI, MAST1, POLH and RTEL1 and BC susceptibility. Unlike other associated genes, carriers of an ATM LoF had a significantly higher risk of developing BC than carriers of an ATM MV (ORLoF = 17.4 vs. ORMV = 1.6; p Het = 0.002). Hence, our approach allowed us to specify BC relative risks associated with deleterious-predicted variants in PALB2, ATM and CHEK2 and to add MAST1, POLH, RTEL1 and FANCI to the list of DNA repair genes possibly involved in BC susceptibility. We also highlight that different types of variants within the same gene can lead to different risk estimates.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Medição de Risco/métodos , Irmãos
19.
Acta Neuropathol Commun ; 6(1): 104, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30322407

RESUMO

Astrocyte reactivity and neuroinflammation are hallmarks of CNS pathological conditions such as Alzheimer's disease. However, the specific role of reactive astrocytes is still debated. This controversy may stem from the fact that most strategies used to modulate astrocyte reactivity and explore its contribution to disease outcomes have only limited specificity. Moreover, reactive astrocytes are now emerging as heterogeneous cells and all types of astrocyte reactivity may not be controlled efficiently by such strategies.Here, we used cell type-specific approaches in vivo and identified the JAK2-STAT3 pathway, as necessary and sufficient for the induction and maintenance of astrocyte reactivity. Modulation of this cascade by viral gene transfer in mouse astrocytes efficiently controlled several morphological and molecular features of reactivity. Inhibition of this pathway in mouse models of Alzheimer's disease improved three key pathological hallmarks by reducing amyloid deposition, improving spatial learning and restoring synaptic deficits.In conclusion, the JAK2-STAT3 cascade operates as a master regulator of astrocyte reactivity in vivo. Its inhibition offers new therapeutic opportunities for Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Astrócitos/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-29951575

RESUMO

In this work we present a systematic effort to summarize current biological pathway knowledge concerning Rheumatoid Arthritis (RA). We are constructing a detailed molecular map based on exhaustive literature scanning, strict curation criteria, re-evaluation of previously published attempts and most importantly experts' advice. The RA map will be web-published in the coming months in the form of an interactive map, using the MINERVA platform, allowing for easy access, navigation and search of all molecular pathways implicated in RA, serving thus, as an on line knowledgebase for the disease. Moreover the map could be used as a template for Omics data visualization offering a first insight about the pathways affected in different experimental datasets. The second goal of the project is a dynamical study focused on synovial fibroblasts' behavior under different initial conditions specific to RA, as recent studies have shown that synovial fibroblasts play a crucial role in driving the persistent, destructive characteristics of the disease. Leaning on the RA knowledgebase and using the web platform Cell Collective, we are currently building a Boolean large scale dynamical model for the study of RA fibroblasts' activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...