Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445145

RESUMO

The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a 'green island' phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast's ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of 'green islands' formation in this pathosystem.


Assuntos
Alternaria/patogenicidade , Mostardeira/microbiologia , Mostardeira/fisiologia , Necrose/microbiologia , Necrose/patologia , Fotossíntese/fisiologia , Doenças das Plantas/microbiologia , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Fluorescência , Mostardeira/metabolismo , Necrose/metabolismo , Fotoperíodo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
2.
Plants (Basel) ; 10(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418897

RESUMO

Alnus viridis (Chaix) DC., green alder, is a fast-growing shrub that grows expansively in the European mountainside. In Poland, A. viridis naturally occurs only in the Bieszczady Mountains (south-eastern part of the country), above the upper forest border. In this study, we assessed the potential of green alder to expand in post-farming areas in the Bieszczady Mountains. We investigated the effects of topographical, climatic, and edaphic characteristics of four various study sites on the physiological and morphological properties of A. viridis leaves in order to answer the question whether the growth of plants in lower positions improves their physiological condition to such an extent that it increases the species invasiveness. This is the first comprehensive ecophysiological study of this species to be carried out in this part of Europe. The photochemical efficiency of PSII, the chlorophyll content, and leaf 13C and 15N discrimination were analyzed. On the basis of leaf radiation reflection, coefficients such as reflectance indices of anthocyanins, carotenoids, flavonoids (ARI2, CRI1, FRI), photochemical index of reflection (PRI), and the water band index (WBI) were calculated. We observed favorable physiological effects in A. viridis plants growing in locations below the upper forest border compared to plants growing in higher locations. As a result, A. viridis may become an invasive species and disturb the phytocoenotic balance of plant communities of the altitudinal zones in the Polish Western Carpathians.

3.
Cells ; 9(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092216

RESUMO

Black spot disease, caused by Alternaria brassicicola in Brassica species, is one of the most devastating diseases all over the world, especially since there is no known fully resistant Brassica cultivar. In this study, the visualization of black spot disease development on Brassica oleracea var. capitata f. alba (white cabbage) leaves and subsequent ultrastructural, molecular and physiological investigations were conducted. Inter- and intracellular hyphae growth within leaf tissues led to the loss of host cell integrity and various levels of organelle disintegration. Severe symptoms of chloroplast damage included the degeneration of chloroplast envelope and grana, and the loss of electron denseness by stroma at the advanced stage of infection. Transcriptional profiling of infected leaves revealed that photosynthesis was the most negatively regulated biological process. However, in infected leaves, chlorophyll and carotenoid content did not decrease until 48 hpi, and several chlorophyll a fluorescence parameters, such as photosystem II quantum yield (Fv/Fm), non-photochemical quenching (NPQ), or plant vitality parameter (Rdf) decreased significantly at 24 and 48 hpi compared to control leaves. Our results indicate that the initial stages of interaction between B. oleracea and A. brassicicola are not uniform within an inoculation site and show a complexity of host responses and fungal attempts to overcome host cell defense mechanisms. The downregulation of photosynthesis at the early stage of this susceptible interaction suggests that it may be a part of a host defense strategy, or, alternatively, that chloroplasts are targets for the unknown virulence factor(s) of A. brassicicola. However, the observed decrease of photosynthetic efficiency at the later stages of infection is a result of the fungus-induced necrotic lesion expansion.


Assuntos
Alternaria/ultraestrutura , Brassica/genética , Brassica/microbiologia , Regulação para Baixo , Interações Hospedeiro-Patógeno/genética , Fotossíntese , Doenças das Plantas/microbiologia , Transcrição Genética , Alternaria/fisiologia , Brassica/fisiologia , Brassica/ultraestrutura , Clorofila A/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Células do Mesofilo/microbiologia , Células do Mesofilo/ultraestrutura , Fotossíntese/genética , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Fatores de Tempo
4.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707671

RESUMO

The roles of endogenous brassinosteroids (BRs) in the modulation of reaction to drought and genetic regulation of this process are still obscure. In this study, a multidirectional analysis was performed on semi-dwarf barley (Hordeum vulgare) Near-Isogenic Lines (NILs) and the reference cultivar "Bowman" to get insights into various aspects of metabolic reaction to drought. The NILs are defective in BR biosynthesis or signaling and displayed an enhanced tolerance to drought. The BR metabolism perturbations affected the glucose and fructose accumulation under the control and stress conditions. The BR metabolism abnormalities negatively affected the sucrose accumulation as well. However, during drought, the BR-deficient NILs accumulated higher contents of sucrose than the "Bowman" cultivar. Under the control conditions, accumulation of transcripts encoding antioxidant enzymes ascorbate peroxidase (HvAPX) and superoxide dismutase (HvSOD) was BR-dependent. However, during drought, the accumulation of HvAPX transcript was BR-dependent, whereas accumulations of transcripts encoding catalase (HvCAT) and HvSOD were not affected by the BR metabolism perturbations. The obtained results reveal a significant role of BRs in regulation of the HvAPX and HvCAT enzymatic activities under control conditions and the HvAPX and HvSOD activities during physiological reactions to drought.


Assuntos
Brassinosteroides/metabolismo , Hordeum/genética , Hordeum/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Secas , Frutose/metabolismo , Genes de Plantas , Glucose/metabolismo , Hordeum/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
5.
Biol Futur ; 70(3): 185-197, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34554449

RESUMO

BACKGROUND AND AIMS: High light causes disturbances in photosynthetic phosphorylation or damage to the photosystem II (PSII) structure or even assimilation tissues. The value of the red/ far-red ratio (R/FR) provides the plant with information on the environmental light conditions, regulating, among others, photosynthetic activity and pigment composition of the plant. The response of the photosynthetic apparatus of the sporotrophophylls and nest leaves of Platycerium bifurcatum, grown for 6 months at the low or high R/FR ratio, were studied. Later, the plants were transferred to high light (1,200 µmol quantum • m-2 • s-1). METHODS: Changes in PSII photochemical activity were determined based on non-destructive methods of chlorophyll a fluorescence kinetics analysis. The measurement of radiation reflectance from the leaves allowed to determine the content of selected pigments related to the photosynthesis process and to assess changes in the Photochemical Reflectance Index. The calculation of reflectance difference and sensitivity analysis was used to identify so-called "stress-sensitive wavelengths". RESULTS AND DISCUSSION: Plant growth at high R/FR ratio prepares photosynthetic apparatus of ferns to high light and enables more efficient conversion of absorbed photons. The increase in the amount of photoprotective compounds allows the protection against photoinhibition in the sporotrophophyll leaves that play key roles in plant nutrition and reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...