Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(40): 27897-27909, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711652

RESUMO

The complete mechanism behind the thermal decomposition of ethylene (C2H4) on Ir(111), which is the first step of graphene growth, is established for the first time employing a combination of experimental and theoretical methods. High-resolution X-ray photoelectron spectroscopy was employed, along with calculations of core level binding-energies, to identify the surface species and their evolution as the surface temperature is increased. To understand the experimental results, we have developed a reaction sequence between the various CnHm species, from ethylene to C monomers and dimers, based on ab initio density functional calculations of all the energy barriers and the Arrhenius prefactors for the most important processes. The resulting temperature evolution of all species obtained from the simulated kinetics of ethylene decomposition agrees with photoemission measurements. The molecular dissociation mechanism begins with the dehydrogenation of ethylene to vinylidene (CH2C), which is then converted to acetylene (CHCH) by the removal and addition of an H atom. The C-C bond is then broken to form methylidyne (CH), and in the same temperature range a small amount of ethylidyne (CH3C) is produced. Finally methylidyne dehydrogenates to produce C monomers that are available for the early stage nucleation of the graphene islands.

2.
J Am Chem Soc ; 138(10): 3395-402, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26829531

RESUMO

The atomistic understanding of the dissociation mechanisms for large molecules adsorbed on surfaces is still a challenge in heterogeneous catalysis. This is especially true for polycyclic aromatic hydrocarbons, which represent an important class of organic compounds used to produce novel graphene-based architectures. Here, we show that coronene molecules adsorbed on Ir(111) undergo major conformational changes during dissociation. They first tilt upward with respect to the surface, still keeping their planar configuration, and subsequently experience a rotation, which changes the molecular axis orientation. Upon lifting, the internal C-C strain is initially relieved; as the dehydrogenation proceeds, the molecules experience a progressive increase in the average interatomic distance and gradually settle to form dome-shaped nanographene flakes. Our results provide important insight into the complex mechanism of molecular breakup, which could have implications in the synthesis of new carbon-based nanostructured materials.

3.
Nanoscale ; 7(29): 12650-8, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26148485

RESUMO

We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

4.
ACS Nano ; 8(12): 12063-70, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25389799

RESUMO

We investigate the structure of epitaxially grown hexagonal boron nitride (h-BN) on Ir(111) by chemical vapor deposition of borazine. Using photoelectron diffraction spectroscopy, we unambiguously show that a single-domain h-BN monolayer can be synthesized by a cyclic dose of high-purity borazine onto the metal substrate at room temperature followed by annealing at T=1270 K, this method giving rise to a diffraction pattern with 3-fold symmetry. In contrast, high-temperature borazine deposition (T=1070 K) results in a h-BN monolayer formed by domains with opposite orientation and characterized by a 6-fold symmetric diffraction pattern. We identify the thermal energy and the binding energy difference between fcc and hcp seeds as key parameters in controlling the alignment of the growing h-BN clusters during the first stage of the growth, and we further propose structural models for the h-BN monolayer on the Ir(111) surface.

5.
Nat Commun ; 5: 5062, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262792

RESUMO

The production of high-quality graphene-oxide interfaces is normally achieved by graphene growth via chemical vapour deposition on a metallic surface, followed by transfer of the C layer onto the oxide, by atomic layer and physical vapour deposition of the oxide on graphene or by carbon deposition on top of oxide surfaces. These methods, however, come with a series of issues: they are complex, costly and can easily result in damage to the carbon network, with detrimental effects on the carrier mobility. Here we show that the growth of a graphene layer on a bimetallic Ni3Al alloy and its subsequent exposure to oxygen at 520 K result in the formation of a 1.5 nm thick alumina nanosheet underneath graphene. This new, simple and low-cost strategy based on the use of alloys opens a promising route to the direct synthesis of a wide range of interfaces formed by graphene and high-κ dielectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA