Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2414: 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784028

RESUMO

Reverse vaccinology (RV) is the state-of-the-art vaccine development strategy that starts with predicting vaccine antigens by bioinformatics analysis of the whole genome of a pathogen of interest. Vaxign is the first web-based RV vaccine prediction method based on calculating and filtering different criteria of proteins. Vaxign-ML is a new Vaxign machine learning (ML) method that predicts vaccine antigens based on extreme gradient boosting with the advance of new technologies and cumulation of protective antigen data. Using a benchmark dataset, Vaxign-ML showed superior performance in comparison to existing open-source RV tools. Vaxign-ML is also implemented within the web-based Vaxign platform to support easy and intuitive access. Vaxign-ML is also available as a command-based software package for more advanced and customizable vaccine antigen prediction. Both Vaxign and Vaxign-ML have been applied to predict SARS-CoV-2 (cause of COVID-19) and Brucella vaccine antigens to demonstrate the integrative approach to analyze and select vaccine candidates using the Vaxign platform.

2.
Vaccines (Basel) ; 9(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34696207

RESUMO

Tuberculosis (TB) is the leading cause of death of any single infectious agent, having led to 1.4 million deaths in 2019 alone. Moreover, an estimated one-quarter of the global population is latently infected with Mycobacterium tuberculosis (MTB), presenting a huge pool of potential future disease. Nonetheless, the only currently licensed TB vaccine fails to prevent the activation of latent TB infections (LTBI). These facts together illustrate the desperate need for a more effective TB vaccine strategy that can prevent both primary infection and the activation of LTBI. In this study, we employed a machine learning-based reverse vaccinology approach to predict the likelihood that each protein within the proteome of MTB laboratory reference strain H37Rv would be a protective antigen (PAg). The proteins predicted most likely to be a PAg were assessed for their belonging to a protein family of previously established PAgs, the relevance of their biological processes to MTB virulence and latency, and finally the immunogenic potential that they may provide in terms of the number of promiscuous epitopes within each. This study led to the identification of 16 proteins with the greatest vaccine potential for further in vitro and in vivo studies. It also demonstrates the value of computational methods in vaccine development.

3.
Nucleic Acids Res ; 49(W1): W671-W678, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34009334

RESUMO

Vaccination is one of the most significant inventions in medicine. Reverse vaccinology (RV) is a state-of-the-art technique to predict vaccine candidates from pathogen's genome(s). To promote vaccine development, we updated Vaxign2, the first web-based vaccine design program using reverse vaccinology with machine learning. Vaxign2 is a comprehensive web server for rational vaccine design, consisting of predictive and computational workflow components. The predictive part includes the original Vaxign filtering-based method and a new machine learning-based method, Vaxign-ML. The benchmarking results using a validation dataset showed that Vaxign-ML had superior prediction performance compared to other RV tools. Besides the prediction component, Vaxign2 implemented various post-prediction analyses to significantly enhance users' capability to refine the prediction results based on different vaccine design rationales and considerably reduce user time to analyze the Vaxign/Vaxign-ML prediction results. Users provide proteome sequences as input data, select candidates based on Vaxign outputs and Vaxign-ML scores, and perform post-prediction analysis. Vaxign2 also includes precomputed results from approximately 1 million proteins in 398 proteomes of 36 pathogens. As a demonstration, Vaxign2 was used to effectively analyse SARS-CoV-2, the coronavirus causing COVID-19. The comprehensive framework of Vaxign2 can support better and more rational vaccine design. Vaxign2 is publicly accessible at http://www.violinet.org/vaxign2.


Assuntos
Desenho de Fármacos , Internet , Aprendizado de Máquina , Software , Vacinas , Vacinologia/métodos , Antígenos Virais/química , Antígenos Virais/imunologia , COVID-19/virologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Proteoma , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas/química , Vacinas/imunologia , Fluxo de Trabalho
4.
Front Immunol ; 12: 639491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777032

RESUMO

Vaccines stimulate various immune factors critical to protective immune responses. However, a comprehensive picture of vaccine-induced immune factors and pathways have not been systematically collected and analyzed. To address this issue, we developed VaximmutorDB, a web-based database system of vaccine immune factors (abbreviated as "vaximmutors") manually curated from peer-reviewed articles. VaximmutorDB currently stores 1,740 vaccine immune factors from 13 host species (e.g., human, mouse, and pig). These vaximmutors were induced by 154 vaccines for 46 pathogens. Top 10 vaximmutors include three antibodies (IgG, IgG2a and IgG1), Th1 immune factors (IFN-γ and IL-2), Th2 immune factors (IL-4 and IL-6), TNF-α, CASP-1, and TLR8. Many enriched host processes (e.g., stimulatory C-type lectin receptor signaling pathway, SRP-dependent cotranslational protein targeting to membrane) and cellular components (e.g., extracellular exosome, nucleoplasm) by all the vaximmutors were identified. Using influenza as a model, live attenuated and killed inactivated influenza vaccines stimulate many shared pathways such as signaling of many interleukins (including IL-1, IL-4, IL-6, IL-13, IL-20, and IL-27), interferon signaling, MARK1 activation, and neutrophil degranulation. However, they also present their unique response patterns. While live attenuated influenza vaccine FluMist induced significant signal transduction responses, killed inactivated influenza vaccine Fluarix induced significant metabolism of protein responses. Two different Yellow Fever vaccine (YF-Vax) studies resulted in overlapping gene lists; however, they shared more portions of pathways than gene lists. Interestingly, live attenuated YF-Vax simulates significant metabolism of protein responses, which was similar to the pattern induced by killed inactivated Fluarix. A user-friendly web interface was generated to access, browse and search the VaximmutorDB database information. As the first web-based database of vaccine immune factors, VaximmutorDB provides systematical collection, standardization, storage, and analysis of experimentally verified vaccine immune factors, supporting better understanding of protective vaccine immunity.


Assuntos
Anticorpos Antivirais/imunologia , Imunidade/imunologia , Fatores Imunológicos/imunologia , Vacinas/imunologia , Animais , Bases de Dados Factuais , Humanos , Internet , Transdução de Sinais/imunologia , Vacinação/métodos
5.
Front Microbiol ; 12: 633732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717026

RESUMO

Alterations in the gut microbiome have been associated with various human diseases. Most existing gut microbiome studies stopped at the stage of identifying microbial alterations between diseased or healthy conditions. As inspired by reverse vaccinology (RV), we developed a new strategy called Reverse Microbiomics (RM) that turns this process around: based on the identified microbial alternations, reverse-predicting the molecular mechanisms underlying the disease and microbial alternations. Our RM methodology starts by identifying significantly altered microbiota profiles, performing bioinformatics analysis on the proteomes of the microbiota identified, and finally predicting potential virulence or protective factors relevant to a microbiome-associated disease. As a use case study, this reverse methodology was applied to study the molecular pathogenesis of rheumatoid arthritis (RA), a common autoimmune and inflammatory disease. Those bacteria differentially associated with RA were first identified and annotated from published data and then modeled and classified using the Ontology of Host-Microbiome Interactions (OHMI). Our study identified 14 species increased and 9 species depleted in the gut microbiota of RA patients. Vaxign was used to comparatively analyze 15 genome sequences of the two pairs of species: Gram-negative Prevotella copri (increased) and Prevotella histicola (depleted), as well as Gram-positive Bifidobacterium dentium (increased) and Bifidobacterium bifidum (depleted). In total, 21 auto-antigens were predicted to be related to RA, and five of them were previously reported to be associated with RA with experimental evidence. Furthermore, we identified 94 potential adhesive virulence factors including 24 microbial ABC transporters. While eukaryotic ABC transporters are key RA diagnosis markers and drug targets, we identified, for the first-time, RA-associated microbial ABC transporters and provided a novel hypothesis of RA pathogenesis. Our study showed that RM, by broadening the scope of RV, is a novel and effective strategy to study from bacterial level to molecular level factors and gain further insight into how these factors possibly contribute to the development of microbial alterations under specific diseases.

6.
Comput Struct Biotechnol J ; 19: 518-529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398234

RESUMO

The development of effective and safe vaccines is the ultimate way to efficiently stop the ongoing COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Built on the fact that SARS-CoV-2 utilizes the association of its Spike (S) protein with the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells, we computationally redesigned the S protein sequence to improve its immunogenicity and antigenicity. Toward this purpose, we extended an evolutionary protein design algorithm, EvoDesign, to create thousands of stable S protein variants that perturb the core protein sequence but keep the surface conformation and B cell epitopes. The T cell epitope content and similarity scores of the perturbed sequences were calculated and evaluated. Out of 22,914 designs with favorable stability energy, 301 candidates contained at least two pre-existing immunity-related epitopes and had promising immunogenic potential. The benchmark tests showed that, although the epitope restraints were not included in the scoring function of EvoDesign, the top S protein design successfully recovered 31 out of the 32 major histocompatibility complex (MHC)-II T cell promiscuous epitopes in the native S protein, where two epitopes were present in all seven human coronaviruses. Moreover, the newly designed S protein introduced nine new MHC-II T cell promiscuous epitopes that do not exist in the wildtype SARS-CoV-2. These results demonstrated a new and effective avenue to enhance a target protein's immunogenicity using rational protein design, which could be applied for new vaccine design against COVID-19 and other pathogens.

7.
Nat Rev Nephrol ; 16(11): 686-696, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939051

RESUMO

An important need exists to better understand and stratify kidney disease according to its underlying pathophysiology in order to develop more precise and effective therapeutic agents. National collaborative efforts such as the Kidney Precision Medicine Project are working towards this goal through the collection and integration of large, disparate clinical, biological and imaging data from patients with kidney disease. Ontologies are powerful tools that facilitate these efforts by enabling researchers to organize and make sense of different data elements and the relationships between them. Ontologies are critical to support the types of big data analysis necessary for kidney precision medicine, where heterogeneous clinical, imaging and biopsy data from diverse sources must be combined to define a patient's phenotype. The development of two new ontologies - the Kidney Tissue Atlas Ontology and the Ontology of Precision Medicine and Investigation - will support the creation of the Kidney Tissue Atlas, which aims to provide a comprehensive molecular, cellular and anatomical map of the kidney. These ontologies will improve the annotation of kidney-relevant data, and eventually lead to new definitions of kidney disease in support of precision medicine.


Assuntos
Atlas como Assunto , Ontologias Biológicas , Nefropatias/classificação , Medicina de Precisão , Big Data , Humanos , Fenótipo
8.
bioRxiv ; 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817949

RESUMO

The current COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and thousands of deaths globally. Extensive efforts and progress have been made to develop effective and safe vaccines against COVID-19. A primary target of these vaccines is the SARS-CoV-2 spike (S) protein, and many studies utilized structural vaccinology techniques to either stabilize the protein or fix the receptor-binding domain at certain states. In this study, we extended an evolutionary protein design algorithm, EvoDesign, to create thousands of stable S protein variants without perturbing the surface conformation and B cell epitopes of the S protein. We then evaluated the mutated S protein candidates based on predicted MHC-II T cell promiscuous epitopes as well as the epitopes' similarity to human peptides. The presented strategy aims to improve the S protein's immunogenicity and antigenicity by inducing stronger CD4 T cell response while maintaining the protein's native structure and function. The top EvoDesign S protein candidate (Design-10705) recovered 31 out of 32 MHC-II T cell promiscuous epitopes in the native S protein, in which two epitopes were present in all seven human coronaviruses. This newly designed S protein also introduced nine new MHC-II T cell promiscuous epitopes and showed high structural similarity to its native conformation. The proposed structural vaccinology method provides an avenue to rationally design the antigen's structure with increased immunogenicity, which could be applied to the rational design of new COVID-19 vaccine candidates.

9.
Front Immunol ; 11: 1581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719684

RESUMO

To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. We then applied the Vaxign and the newly developed machine learning-based Vaxign-ML reverse vaccinology tools to predict COVID-19 vaccine candidates. Our Vaxign analysis found that the SARS-CoV-2 N protein sequence is conserved with SARS-CoV and MERS-CoV but not from the other four human coronaviruses causing mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and the predicted linear B-cell epitopes were found to be localized on the surface of the protein. Our predicted vaccine targets have the potential for effective and safe COVID-19 vaccine development. We also propose that an "Sp/Nsp cocktail vaccine" containing a structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective complementary immune responses.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Aprendizado de Máquina , Pandemias , Pneumonia Viral , Vacinas Virais , Animais , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunogenicidade da Vacina , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
11.
bioRxiv ; 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32511333

RESUMO

To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane protein, have been tested for vaccine development against SARS and MERS. We further used the Vaxign reverse vaccinology tool and the newly developed Vaxign-ML machine learning tool to predict COVID-19 vaccine candidates. The N protein was found to be conserved in the more pathogenic strains (SARS/MERS/COVID-19), but not in the other human coronaviruses that mostly cause mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10) were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and linear B-cell epitopes localized in specific locations and functional domains of the protein. Our predicted vaccine targets provide new strategies for effective and safe COVID-19 vaccine development.

12.
Bioinformatics ; 36(10): 3185-3191, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096826

RESUMO

MOTIVATION: Reverse vaccinology (RV) is a milestone in rational vaccine design, and machine learning (ML) has been applied to enhance the accuracy of RV prediction. However, ML-based RV still faces challenges in prediction accuracy and program accessibility. RESULTS: This study presents Vaxign-ML, a supervised ML classification to predict bacterial protective antigens (BPAgs). To identify the best ML method with optimized conditions, five ML methods were tested with biological and physiochemical features extracted from well-defined training data. Nested 5-fold cross-validation and leave-one-pathogen-out validation were used to ensure unbiased performance assessment and the capability to predict vaccine candidates against a new emerging pathogen. The best performing model (eXtreme Gradient Boosting) was compared to three publicly available programs (Vaxign, VaxiJen, and Antigenic), one SVM-based method, and one epitope-based method using a high-quality benchmark dataset. Vaxign-ML showed superior performance in predicting BPAgs. Vaxign-ML is hosted in a publicly accessible web server and a standalone version is also available. AVAILABILITY AND IMPLEMENTATION: Vaxign-ML website at http://www.violinet.org/vaxign/vaxign-ml, Docker standalone Vaxign-ML available at https://hub.docker.com/r/e4ong1031/vaxign-ml and source code is available at https://github.com/VIOLINet/Vaxign-ML-docker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antígenos de Bactérias , Vacinologia , Biologia Computacional , Aprendizado de Máquina , Software , Aprendizado de Máquina Supervisionado
13.
Infect Genet Evol ; 80: 104186, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31923726

RESUMO

Tuberculosis (TB) is the leading infectious cause of death worldwide and claimed over 1.6 million lives in 2017. Furthermore, one-third of the world population is estimated to be latently infected with Mycobacterium tuberculosis (MTB). A safe and effective MTB vaccine that can prevent both the primary infection and the reactivation of latent tuberculosis infection (LTBI), and that can protect against all forms of TB in adults and adolescents is urgently needed. In this study, using computational approaches, we predicted the capacity of the epitopes to be presented by the HLA molecules for ten MTB protein antigens (Mtb39a, Mtb32a, Ag85B, ESAT-6, TB10.4, Rv2660, Rv2608, Rv3619, Rv3620, and Rv1813) constituting five MTB subunit vaccines (M72, H1, H4, H56, and ID93) that are currently in clinical trials. We also assessed the promiscuity of the predicted epitopes based on a reference set of alleles and supertype alleles, and estimated the population coverage of the ten antigens in three high TB burden countries (China, India, and South Africa). Among the ten antigens evaluated, Rv2608 was found to have the highest number of promiscuous epitopes predicted to bind the most MHC-I and MHC-II supertype alleles, highest predicted immunogenicity, and the broadest population coverage in three high burden countries. Between the two latency-related antigens (Rv1813 and Rv2660), Rv1813 was predicted to have a better epitope diversity and promiscuity, immunogenicity, and population coverage. As a result, the ID93 vaccine consisted of Rv2608, Rv1813, Rv3619, and Rv3620 was predicted to have the best potential for preventing both active and latent TB infection. Our results highlighted the importance and usefulness of a systematic and comprehensive assessment of protein antigens using computational approaches in MTB vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Epitopos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas de Subunidades/imunologia , Alelos , Sequência de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Epitopos/química , Epitopos/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunogenicidade da Vacina/genética , Tuberculose Latente/prevenção & controle , Mycobacterium tuberculosis/genética , Cobertura Vacinal
14.
Methods Mol Biol ; 2074: 165-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583638

RESUMO

Modern large-scale biological data analysis often generates a set of significant genes, frequently associated with scores. Pathway-based approaches are routinely performed to understand the functional contexts of these genes. Reactome is the most comprehensive open-access biological pathway knowledge base, widely used in the research community, providing a solid foundation for pathway-based data analysis. ReactomeFIViz is a Cytoscape app built upon Reactome pathways to help users perform pathway- and network-based data analysis and visualization. In this chapter we describe procedures on how to perform pathway enrichment analysis using ReactomeFIViz for a gene score file. We describe two types of analysis: pathway enrichment based on a set of significant genes and GSEA analysis using gene scores without cutoff. We also describe a feature to overlay gene scores onto pathway diagrams, enabling users to understand the underlying mechanisms for up- or down- regulated pathways collected from pathway analysis.


Assuntos
Biologia Computacional/métodos , Mapas de Interação de Proteínas , Software
15.
Stat Biopharm Res ; 12(3): 303-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33880140

RESUMO

As a national public health surveillance resource, Vaccine Adverse Event Reporting System (VAERS) is a key component in ensuring the safety of vaccines. Numerous methods have been used to conduct safety studies with the VAERS database. These efforts focus on the downstream statistical analysis of the vaccine and adverse event associations. In this paper, we primarily focus on processing the raw data in VAERS before the analysis step, which is also an important part of the signal detection process. Due to the semi-annual update in the Medical Dictionary for Regulatory Activities (MedDRA) coding system, adverse event terms that describe the same symptom might change in VAERS; therefore, we identify these terms and combine them to increase the signal detection power. We also consider the uncertainty of the vaccine and adverse event pairs that arise from reports with multiple vaccines. Finally, we discuss four commonly used statistics in assessing the vaccine and adverse event associations, and propose to use the statistics that are robust to the reporting bias in VAERS and adjust for potential confounders of the vaccine and adverse event association to increase signal detection accuracy.

16.
BMC Bioinformatics ; 20(Suppl 21): 704, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31865910

RESUMO

BACKGROUND: Different human responses to the same vaccine were frequently observed. For example, independent studies identified overlapping but different transcriptomic gene expression profiles in Yellow Fever vaccine 17D (YF-17D) immunized human subjects. Different experimental and analysis conditions were likely contributed to the observed differences. To investigate this issue, we developed a Vaccine Investigation Ontology (VIO), and applied VIO to classify the different variables and relations among these variables systematically. We then evaluated whether the ontological VIO modeling and VIO-based statistical analysis would contribute to the enhanced vaccine investigation studies and a better understanding of vaccine response mechanisms. RESULTS: Our VIO modeling identified many variables related to data processing and analysis such as normalization method, cut-off criteria, software settings including software version. The datasets from two previous studies on human responses to YF-17D vaccine, reported by Gaucher et al. (2008) and Querec et al. (2009), were re-analyzed. We first applied the same LIMMA statistical method to re-analyze the Gaucher data set and identified a big difference in terms of significantly differentiated gene lists compared to the original study. The different results were likely due to the LIMMA version and software package differences. Our second study re-analyzed both Gaucher and Querec data sets but with the same data processing and analysis pipeline. Significant differences in differential gene lists were also identified. In both studies, we found that Gene Ontology (GO) enrichment results had more overlapping than the gene lists and enriched pathway lists. The visualization of the identified GO hierarchical structures among the enriched GO terms and their associated ancestor terms using GOfox allowed us to find more associations among enriched but often different GO terms, demonstrating the usage of GO hierarchical relations enhance data analysis. CONCLUSIONS: The ontology-based analysis framework supports standardized representation, integration, and analysis of heterogeneous data of host responses to vaccines. Our study also showed that differences in specific variables might explain different results drawn from similar studies.


Assuntos
Vacinas , Ontologias Biológicas , Humanos , Software
17.
BMC Bioinformatics ; 20(Suppl 5): 180, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31272389

RESUMO

BACKGROUND: Stem cells and stem cell lines are widely used in biomedical research. The Cell Ontology (CL) and Cell Line Ontology (CLO) are two community-based OBO Foundry ontologies in the domains of in vivo cells and in vitro cell line cells, respectively. RESULTS: To support standardized stem cell investigations, we have developed an Ontology for Stem Cell Investigations (OSCI). OSCI imports stem cell and cell line terms from CL and CLO, and investigation-related terms from existing ontologies. A novel focus of OSCI is its application in representing metadata types associated with various stem cell investigations. We also applied OSCI to systematically categorize experimental variables in an induced pluripotent stem cell line cell study related to bipolar disorder. In addition, we used a semi-automated literature mining approach to identify over 200 stem cell gene markers. The relations between these genes and stem cells are modeled and represented in OSCI. CONCLUSIONS: OSCI standardizes stem cells found in vivo and in vitro and in various stem cell investigation processes and entities. The presented use cases demonstrate the utility of OSCI in iPSC studies and literature mining related to bipolar disorder.


Assuntos
Ontologias Biológicas , Pesquisa Biomédica/normas , Animais , Humanos , Células-Tronco
18.
BMC Bioinformatics ; 20(Suppl 7): 199, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074377

RESUMO

BACKGROUND: Drug adverse events (AEs), or called adverse drug events (ADEs), are ranked one of the leading causes of mortality. The Ontology of Adverse Events (OAE) has been widely used for adverse event AE representation, standardization, and analysis. OAE-based ADE-specific ontologies, including ODNAE for drug-associated neuropathy-inducing AEs and OCVDAE for cardiovascular drug AEs, have also been developed and used. However, these ADE-specific ontologies do not consider the effects of other factors (e.g., age and drug-treated disease) on the outcomes of ADEs. With more ontological studies of ADEs, it is also critical to develop a general purpose ontology for representing ADEs for various types of drugs. RESULTS: Our survey of FDA drug package insert documents and other resources for 224 neuropathy-inducing drugs discovered that many drugs (e.g., sirolimus and linezolid) cause different AEs given patients' age or the diseases treated by the drugs. To logically represent the complex relations among drug, drug ingredient and mechanism of action, AE, age, disease, and other related factors, an ontology design pattern was developed and applied to generate a community-driven open-source Ontology of Drug Adverse Events (ODAE). The ODAE development follows the OBO Foundry ontology development principles (e.g., openness and collaboration). Built on a generalizable ODAE design pattern and extending the OAE and NDF-RT ontology, ODAE has represented various AEs associated with the over 200 neuropathy-inducing drugs given different age and disease conditions. ODAE is now deposited in the Ontobee for browsing and queries. As a demonstration of usage, a SPARQL query of the ODAE knowledge base was developed to identify all the drugs having the mechanisms of ion channel interactions, the diseases treated with the drugs, and AEs after the treatment in adult patients. AE-specific drug class effects were also explored using ODAE and SPARQL. CONCLUSION: ODAE provides a general representation of ADEs given different conditions and can be used for querying scientific questions. ODAE is also a robust knowledge base and platform for semantic and logic representation and study of ADEs of more drugs in the future.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Linezolida/efeitos adversos , Doenças do Sistema Nervoso/induzido quimicamente , Preparações Farmacêuticas/administração & dosagem , Sirolimo/efeitos adversos , Software , Adulto , Fatores Etários , Antibacterianos/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Humanos , Preparações Farmacêuticas/análise
19.
Nucleic Acids Res ; 47(D1): D693-D700, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30365026

RESUMO

Virulence factors (VFs) are molecules that allow microbial pathogens to overcome host defense mechanisms and cause disease in a host. It is critical to study VFs for better understanding microbial pathogenesis and host defense mechanisms. Victors (http://www.phidias.us/victors) is a novel, manually curated, web-based integrative knowledge base and analysis resource for VFs of pathogens that cause infectious diseases in human and animals. Currently, Victors contains 5296 VFs obtained via manual annotation from peer-reviewed publications, with 4648, 179, 105 and 364 VFs originating from 51 bacterial, 54 viral, 13 parasitic and 8 fungal species, respectively. Our data analysis identified many VF-specific patterns. Within the global VF pool, cytoplasmic proteins were more common, while adhesins were less common compared to findings on protective vaccine antigens. Many VFs showed homology with host proteins and the human proteins interacting with VFs represented the hubs of human-pathogen interactions. All Victors data are queriable with a user-friendly web interface. The VFs can also be searched by a customized BLAST sequence similarity searching program. These VFs and their interactions with the host are represented in a machine-readable Ontology of Host-Pathogen Interactions. Victors supports the 'One Health' research as a vital source of VFs in human and animal pathogens.


Assuntos
Doenças Transmissíveis/microbiologia , Genoma Bacteriano , Genoma Fúngico , Genoma Viral , Bases de Conhecimento , Software , Fatores de Virulência/genética , Animais , Doenças Transmissíveis/veterinária , Doenças Transmissíveis/virologia , Bases de Dados Genéticas , Genômica/métodos , Genômica/normas , Interações Hospedeiro-Patógeno , Humanos
20.
J Biomed Semantics ; 9(1): 3, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329592

RESUMO

Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).


Assuntos
Ontologias Biológicas , Semântica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...