Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32134239

RESUMO

Control of forward and inverse reactions between perovskites and precursor materials is key to attaining high-quality perovskite materials. Many techniques focus on synthesizing nanostructured CsPbX3 materials (e.g., nanowires) via a forward reaction (CsX + PbX2 → CsPbX3). However, low solubility of inorganic perovskites and complex phase transition make it difficult to realize the precise control of composition and length of nanowires using the conventional forward approach. Herein, we report the self-assembly inverse growth of CsPbBr3 micronanowires (MWs) (CsPb2Br5 → CsPbBr3 + PbBr2↑) by controlling phase transition from CsPb2Br5 to CsPbBr3. The two-dimensional (2D) structure of CsPb2Br5 serves as nucleation sites to induce initial CsPbBr3 MW growth. Also, phase transition allows crystal rearrangement and slows down crystal growth, which facilitates the MW growth of CsPbBr3 crystals along the 2D planes of CsPb2Br5. A CsPbBr3 MW photodetector constructed based on the inverse growth shows a high responsivity of 6.44 A W-1 and detectivity of ∼1012 Jones. Large grain size, high crystallinity, and large thickness can effectively alleviate decomposition/degradation of perovskites, which leads to storage stability for over 60 days in humid environment (relative humidity = 45%) and operational stability for over 3000 min under illumination (wavelength = 400 nm, light intensity = 20.06 mW cm-2).

2.
J Phys Chem Lett ; 11(3): 818-823, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31933374

RESUMO

All-inorganic halide perovskites are promising materials for optoelectronic applications. The surface or interface structure of the perovskites plays a crucial role in determining the optoelectronic conversion efficiency, as well as the material stability. A thorough understanding of surface atomic structures of the inorganic perovskites and their contributions to their optoelectronic properties and stability is lacking. Here we show a scanning tunneling microscopy investigation on the atomic and electronic structure of CsPbBr3 perovskite. Two different surface structures with a stripe and an armchair domain are identified, which originates from a complex interplay between Cs cations and Br anions. Our findings are further supported and correlated with density functional theory calculations and photoemission spectroscopy measurements. The stability evaluation of photovoltaic devices indicates a higher stability for CsPbBr3 in comparison with MAPbBr3, which is closely related to the low volatility of Cs from the perovskite surface.

3.
Angew Chem Int Ed Engl ; 59(17): 6676-6698, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31369195

RESUMO

In several photovoltaic (PV) technologies, the presence of electronic defects within the semiconductor band gap limit the efficiency, reproducibility, as well as lifetime. Metal halide perovskites (MHPs) have drawn great attention because of their excellent photovoltaic properties that can be achieved even without a very strict film-growth control processing. Much has been done theoretically in describing the different point defects in MHPs. Herein, we discuss the experimental challenges in thoroughly characterizing the defects in MHPs such as, experimental assignment of the type of defects, defects densities, and the energy positions within the band gap induced by these defects. The second topic of this Review is passivation strategies. Based on a literature survey, the different types of defects that are important to consider and need to be minimized are examined. A complete fundamental understanding of defect nature in MHPs is needed to further improve their optoelectronic functionalities.

4.
ACS Nano ; 13(10): 12127-12136, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31566944

RESUMO

Organic-inorganic hybrid perovskites (OHPs) have garnered much attention among the photovoltaic and light-emitting diode research community due to their excellent optoelectronic properties and low-cost fabrication. Defects in perovskites have been proposed to affect device efficiency and stability and to have a potential role in enabling ion migration. In this study, the dynamic behavior and electronic properties of intrinsic defects in CH3NH3PbBr3 (MAPbBr3) were explored at the atomic scale. We use scanning tunneling microscopy to show unambiguously the occurrence of vacancy-assisted transport of individual ions as well as the existence of vacancy defect clusters at the OHP surface. We combine these observations with density functional theory (DFT) calculations to identify the mechanisms for this ion motion and show that ion transport energy barriers, as well as transport mechanisms, at the surface depend on crystal direction. DFT calculations also reveal that vacancy defect clusters can significantly modify the local work function of the perovskite surface, which is then expected to alter interfacial charge transport in a device. Our work provides a microscopic insight into the mechanism of ion migration in OHPs and also delivers the useful information for device improvement from the perspective of interface engineering.

5.
Science ; 365(6453): 591-595, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395783

RESUMO

Although ß-CsPbI3 has a bandgap favorable for application in tandem solar cells, depositing and stabilizing ß-CsPbI3 experimentally has remained a challenge. We obtained highly crystalline ß-CsPbI3 films with an extended spectral response and enhanced phase stability. Synchrotron-based x-ray scattering revealed the presence of highly oriented ß-CsPbI3 grains, and sensitive elemental analyses-including inductively coupled plasma mass spectrometry and time-of-flight secondary ion mass spectrometry-confirmed their all-inorganic composition. We further mitigated the effects of cracks and pinholes in the perovskite layer by surface treating with choline iodide, which increased the charge-carrier lifetime and improved the energy-level alignment between the ß-CsPbI3 absorber layer and carrier-selective contacts. The perovskite solar cells made from the treated material have highly reproducible and stable efficiencies reaching 18.4% under 45 ± 5°C ambient conditions.

6.
Sci Rep ; 9(1): 5811, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967593

RESUMO

The valid strong THz absorption at 1.58 THz was probed in the organic-inorganic hybrid perovskite thin film, CH3NH3PbI3, fabricated by sequential vacuum evaporation method. In usual solution-based methods such as 2-step solution and antisolvent, we observed the relatively weak two main absorption peaks at 0.95 and 1.87 THz. The measured absorption spectrum is analyzed by density-functional theory calculations. The modes at 0.95 and 1.87 THz are assigned to the Pb-I vibrations of the inorganic components in the tetragonal phase. By contrast, the origin of the 1.58 THz absorption is due to the structural deformation of Pb-I bonding at the grain boundary incorporated with a CH3NH2 molecular defect.

7.
ACS Appl Mater Interfaces ; 11(13): 12586-12593, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30848116

RESUMO

The correct identification of all gases released during hybrid perovskite degradation is of great significance to develop strategies to extend the lifespan of any device based on this semiconductor. CH3X (X = Br/I) is a released degradation gas/low boiling point liquid arising from methylammonium (MA+) based perovskites, which has been largely overlooked in the literature focusing on stability of perovskite solar cells. Herein, we present an unambiguous identification of CH3I release using microwave (rotational) spectroscopy. An experimental back-reaction test demonstrates that the well-known CH3NH2/HX degradation route may not be the ultimate degradation pathway of MAPbX3 in thermodynamic closed systems. Meanwhile, the CH3X/NH3 route cannot back-react selectively to MAX formation as occurred for the former back-reaction. Metadynamics calculations uncover the X halide effect on energy barriers for both degradation reactions showing a better stability of Br based perovskite ascribed to two aspects: (i) lower Brönsted-Lowry acidity of HBr compared to HI and (ii) higher nucleophilic character of CH3NH2 compared to NH3. The latter property makes CH3NH2 molecules stay preferentially attached on the electrophilic perovskite surface (Pb2+) during the dynamic simulation instead of being detached as observed for the NH3 molecule.

8.
J Am Chem Soc ; 141(8): 3515-3523, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30646682

RESUMO

Increasing the stability of perovskites is essential for their integration in commercial photovoltaic devices. Halide mixing is suggested as a powerful strategy toward stable perovskite materials. However, the stabilizing effect of the halides critically depends on their distribution in the mixed compound, a topic that is currently under intense debate. Here we successfully determine the exact location of the I and Cl anions in the  CH3NH3PbBr3- yI y and CH3NH3PbBr3- zCl z mixed halide perovskite lattices and correlate it with the enhanced stability we find for the latter. By combining scanning tunneling microscopy and density functional theory, we predict that, for low ratios, iodine and chlorine incorporation have different effects on the electronic properties and stability of the CH3NH3PbBr3 perovskite material. In addition, we determine the optimal Cl incorporation ratio for stability increase without detrimental band gap modification, providing an important direction for the fabrication of stable perovskite devices. The increased material stability induced by chlorine incorporation is verified by performing photoelectron spectroscopy on a half-cell device architecture. Our findings provide an answer to the current debate on halide incorporation and demonstrate their direct influence on device stability.

9.
Nat Commun ; 10(1): 16, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604757

RESUMO

There has been an urgent need to eliminate toxic lead from the prevailing halide perovskite solar cells (PSCs), but the current lead-free PSCs are still plagued with the critical issues of low efficiency and poor stability. This is primarily due to their inadequate photovoltaic properties and chemical stability. Herein we demonstrate the use of the lead-free, all-inorganic cesium tin-germanium triiodide (CsSn0.5Ge0.5I3) solid-solution perovskite as the light absorber in PSCs, delivering promising efficiency of up to 7.11%. More importantly, these PSCs show very high stability, with less than 10% decay in efficiency after 500 h of continuous operation in N2 atmosphere under one-sun illumination. The key to this striking performance of these PSCs is the formation of a full-coverage, stable native-oxide layer, which fully encapsulates and passivates the perovskite surfaces. The native-oxide passivation approach reported here represents an alternate avenue for boosting the efficiency and stability of lead-free PSCs.

10.
Adv Mater ; 31(11): e1804284, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680833

RESUMO

Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low-cost fabrication. However, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium-cesium-based perovskite and a moisture-resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 °C and 85% relative humidity (the "double 85" aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin-layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.

11.
Nat Commun ; 9(1): 4480, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367063

RESUMO

Lightweight and flexible energy storage devices are urgently needed to persistently power wearable devices, and lithium-sulfur batteries are promising technologies due to their low mass densities and high theoretical capacities. Here we report a flexible and high-energy lithium-sulfur full battery device with only 100% oversized lithium, enabled by rationally designed copper-coated and nickel-coated carbon fabrics as excellent hosts for lithium and sulfur, respectively. These metallic carbon fabrics endow mechanical flexibility, reduce local current density of the electrodes, and, more importantly, significantly stabilize the electrode materials to reach remarkable Coulombic efficiency of >99.89% for a lithium anode and >99.82% for a sulfur cathode over 400 half-cell charge-discharge cycles. Consequently, the assembled lithium-sulfur full battery provides high areal capacity (3 mA h cm-2), high cell energy density (288 W h kg-1 and 360 W h L-1), excellent cycling stability (260 cycles), and remarkable bending stability at a small radius of curvature (<1 mm).

12.
Nat Commun ; 9(1): 3880, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250031

RESUMO

Besides high efficiency, the stability and reproducibility of perovskite solar cells (PSCs) are also key for their commercialization. Herein, we report a simple perovskite formation method to fabricate perovskite films with thickness over 1 µm in ambient condition on the basis of the fast gas-solid reaction of chlorine-incorporated hydrogen lead triiodide and methylamine gas. The resultant thick and smooth chlorine-incorporated perovskite films exhibit full coverage, improved crystallinity, low surface roughness and low thickness variation. The resultant PSCs achieve an average power conversion efficiency of 19.1 ± 0.4% with good reproducibility. Meanwhile, this method enables an active area efficiency of 15.3% for 5 cm × 5 cm solar modules. The un-encapsulated PSCs exhibit an excellent T80 lifetime exceeding 1600 h under continuous operation conditions in dry nitrogen environment.

13.
ACS Appl Mater Interfaces ; 10(26): 22513-22519, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29879837

RESUMO

Organic field-effect transistors (OFETs) are the most fundamental device units in organic electronics. Interface engineering at the semiconductor/dielectric interface is an effective approach for improving device performance, particularly for enhancing charge transport in conducting channels. Here, we report flat-lying molecular monolayers that exhibit good uniformity and high crystallinity at the semiconductor/dielectric interface, deposited through slow thermal evaporation. Transistor devices achieve high carrier mobility up to 2.80 cm2 V-1 s-1, which represents a remarkably improvement in device performance compared with devices that are completely based on fast-evaporated films. Interfacial flat-lying monolayers benefit charge transport by suppressing the polarization of dipoles and narrowing the broadening of trap density of states. Our work provides a promising strategy for enhancing the performance of OFETs by using interfacial flat-lying molecular monolayers.

14.
J Phys Chem Lett ; 9(6): 1318-1323, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29493240

RESUMO

In organic field-effect transistors, the first few molecular layers at the semiconductor/dielectric interface are regarded as the active channel for charge transport; thus, great efforts have been devoted to the modification and optimization of molecular packing at such interfaces. Here, we report organic monolayers with large-area uniformity and high crystallinity deposited by an antisolvent-assisted spin-coating method acting as the templating layers between the dielectric and thermally evaporated semiconducting layers. The predeposited crystalline monolayers significantly enhance the film crystallinity of upper layers and the overall performance of transistors using these hybrid-deposited semiconducting films, showing a high carrier mobility up to 11.3 cm2 V-1 s-1. Additionally, patterned transistor arrays composed of the templating monolayers are fabricated, yielding an average mobility of 7.7 cm2 V-1 s-1. This work demonstrates a promising method for fabricating low-cost, high-performance, and large-area organic electronics.

15.
J Phys Chem B ; 122(2): 511-520, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28514169

RESUMO

The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO2, but the device is not stable and degrades rapidly. With an amorphous TiO2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO2. Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH3NH3PbI3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO2 and CH3NH3PbI3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO2 can enhance device stability, strongly suggests that the interface interaction between TiO2 and CH3NH3PbI3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

16.
Adv Mater ; 30(3)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29210216

RESUMO

Because of the rapid rise of the efficiency, perovskite solar cells are currently considered as the most promising next-generation photovoltaic technology. Much effort has been made to improve the efficiency and stability of perovskite solar cells. Here, it is demonstrated that the addition of a novel organic cation of 2-(6-bromo-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethan-1-ammonium iodide (2-NAM), which has strong Lewis acid and base interaction (between CO and Pb) with perovskite, can effectively increase crystalline grain size and reduce charge carrier recombination of the double cation FA0.83 MA0.17 PbI2.51 Br0.49 perovskite film, thus boosting the efficiency from 17.1 ± 0.8% to 18.6 ± 0.9% for the 0.1 cm2 cell and from 15.5 ± 0.5% to 16.5 ± 0.6% for the 1.0 cm2 cell. The champion cell shows efficiencies of 20.0% and 17.6% with active areas of 0.1 and 1.0 cm2 , respectively. Moreover, the hysteresis behavior is suppressed and the stability is improved. The result provides a promising route to further elevate efficiency and stability of perovskite solar cells by the fine tuning of triple organic cations.

17.
Sci Adv ; 3(9): e1701186, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913429

RESUMO

Organic thin-film transistors (OTFTs) with high mobility and low contact resistance have been actively pursued as building blocks for low-cost organic electronics. In conventional solution-processed or vacuum-deposited OTFTs, due to interfacial defects and traps, the organic film has to reach a certain thickness for efficient charge transport. Using an ultimate monolayer of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) molecules as an OTFT channel, we demonstrate remarkable electrical characteristics, including intrinsic hole mobility over 30 cm2/Vs, Ohmic contact with 100 Ω · cm resistance, and band-like transport down to 150 K. Compared to conventional OTFTs, the main advantage of a monolayer channel is the direct, nondisruptive contact between the charge transport layer and metal leads, a feature that is vital for achieving low contact resistance and current saturation voltage. On the other hand, bilayer and thicker C8-BTBT OTFTs exhibit strong Schottky contact and much higher contact resistance but can be improved by inserting a doped graphene buffer layer. Our results suggest that highly crystalline molecular monolayers are promising form factors to build high-performance OTFTs and investigate device physics. They also allow us to precisely model how the molecular packing changes the transport and contact properties.

18.
J Phys Chem Lett ; 8(17): 3947-3953, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28767259

RESUMO

For the first time, we intentionally deposit an ultrathin layer of excess methylammonium iodide (MAI) on top of a methylammonium lead iodide (MAPI) perovskite film. Using photoelectron spectroscopy, we investigate the role of excess MAI at the interface between perovskite and spiro-MeOTAD hole-transport layer in standard structure perovskite solar cells (PSCs). We found that interfacial, favorable, energy-level tuning of the MAPI film can be achieved by controlling the amount of excess MAI on top of the MAPI film. Our XPS results reveal that MAI dissociates at low thicknesses (<16 nm) when deposited on MAPbI3. It is not the MAI layer but the dissociated species that leads to the interfacial energy-level tuning. Optimized interface energetics were verified by solar cell device testing, leading to both an increase of 19% in average steady-state power conversion efficiency (PCE) and significantly improved reproducibility, which is represented by a much lower PCE standard deviation (from 15 ± 2% to 17.2 ± 0.4%).

19.
ACS Appl Mater Interfaces ; 9(36): 30197-30246, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28682587

RESUMO

Organic-inorganic halide perovskite materials (e.g., MAPbI3, FAPbI3, etc.; where MA = CH3NH3+, FA = CH(NH2)2+) have been studied intensively for photovoltaic applications. Major concerns for the commercialization of perovskite photovoltaic technology to take off include lead toxicity, long-term stability, hysteresis, and optimal bandgap. Therefore, there is still need for further exploration of alternative candidates. Elemental composition engineering of MAPbI3 and FAPbI3 has been proposed to address the above concerns. Among the best six certified power conversion efficiencies reported by National Renewable Energy Laboratory on perovskite-based solar cells, five are based on mixed perovskites (e.g., MAPbI1-xBrx, FA0.85MA0.15PbI2.55Br0.45, Cs0.1FA0.75MA0.15PbI2.49Br0.51). In this paper, we review the recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis. In the outlook, we outline the future research directions based on the reported results as well as related topics that warrant further investigation.

20.
J Phys Chem Lett ; 8(14): 3193-3198, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28649837

RESUMO

Organo-lead-halide perovskites are promising materials for optoelectronic applications. Perovskite solar cells have reached power conversion efficiencies of over 22%, and perovskite light-emitting diodes have recently achieved over 11% external quantum efficiency. To date, most research on perovskite light-emitting diodes has focused on solution-processed films. There are many advantages of a vapor-based growth process to prepare perovskites, including ease of patterning, ability to batch process, and material compatibility. We investigated an all-vapor perovskite growth process by chemical vapor deposition and demonstrated luminance up to 560 cd/m2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA