Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
J Clin Immunol ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754930

RESUMO

Natural killer (NK) cell deficiency (NKD) is a subset of primary immunodeficiency disorders (PID) in which an abnormality of NK cells represents a major immunological defect resulting in the patient's clinical immunodeficiency. This is distinct from a much larger group of PIDs that include an NK cell abnormality as a minor component of the immunodeficiency. Patients with NKD most frequently have atypical consequences of herpesviral infections. There are now 6 genes that have been ascribed to causing NKD, some exclusively and others that also cause other known immunodeficiencies. This list has grown in recent years and as such the mechanistic and molecular clarity around what defines an NKD is an emerging and important field of research. Continued increased clarity will allow for more rational approaches to the patients themselves from a therapeutic standpoint. Having evaluated numerous individuals for NKD, I share my perspective on approaching the diagnosis and managing these patients.

3.
J Clin Immunol ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758281

RESUMO

PURPOSE: Prophylactic antibiotics (PA) and immunoglobulin replacement (IGRT) are commonly used in specific antibody deficiency (SAD); however, optimal treatment is not well-established. Our purpose is to compare treatment outcomes with IGRT and/or PA among SAD patients. METHODS: A retrospective chart review of SAD patients treated at two tertiary centers between January 2012 and May 2017 was performed. Clinical and laboratory data, and rates of infections prior to and after treatment with IGRT or PA were analyzed. Descriptive analyses, between-group comparisons of rates of infection after 1 year of treatment, and a stepwise logistic regression model were employed to explore factors contributing to treatment outcomes. RESULTS: We identified 65 SAD patients with mean age were 18 years (2-71 years). The baseline mean number of infections in the PA group and IGRT group was 4.71 (SD 3.15) and 7.73 (SD 6.65), respectively. Twenty-nine (44.6%) received IGRT, 7 (10.7%) received PA, 7 (10.7%) received both IGRT and PA, 15 (23.1%) failed PA and switched to IGRT, and 7 did not receive any specific treatment. After 1 year of treatment, the difference in the mean number of infections in PA vs. IGRT was not statistically significant [2.86 (2.73) vs. 4.44 (4.74), p = 0.27]. Reporting autoimmunity increased the odds for persistent infections (OR = 4.29; p = 0.047), while higher IgG levels decreased the odds for persistent infections (OR = 0.68, p = 0.018). CONCLUSIONS: PA and IGRT are equally effective as first line in preventing infections in SAD patients. However, patients who fail PA would benefit from IGRT.

4.
J Clin Invest ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31714901

RESUMO

X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia (XMEN) disease is caused by deficiency of the magnesium transporter 1 gene (MAGT1). We studied 23 XMEN patients, 8 of whom were EBV-naïve. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum, and increased CD4-CD8-B220-TCRalpha/beta+ T (abDNT) cells, in addition to the previously described features of an inverted CD4:CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the "Natural-Killer Group 2, member D" (NKG2D) receptor. EBV-associated B cell malignancies occurred frequently in EBV-infected patients. We investigated XMEN patients and autoimmune lymphoproliferative syndrome (ALPS) patients by deep immunophenotyping (32 immune markers) using Time of Flight Mass Cytometry (CyTOF). Our analysis revealed that the abundance of two populations of naïve B cells (CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4++CD10+CD38+ and CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4+CD10-CD38-) could differentially classify XMEN, ALPS, and normal individuals. We also performed glycoproteomics analysis on T lymphocytes and show that XMEN disease is a congenital disorder of glycosylation that affects a restricted subset of glycoproteins. Transfection of MAGT1 mRNA enabled us to rescue proteins with defective glycosylation. Together, these data provide new clinical and pathophysiological foundations with important ramifications for the diagnosis and treatment of XMEN disease.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31568798

RESUMO

Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31600547

RESUMO

BACKGROUND: Patients with signal transducer and activator of transcription 5b (STAT5b) deficiency have impairment in T-cell homeostasis and natural killer (NK) cells which leads to autoimmunity, recurrent infections, and combined immune deficiency. OBJECTIVE: In this study we characterized the NK cell defect in STAT5b-deficient human NK cells, as well as Stat5b-/- mice. METHODS: We used multiparametric flow cytometry, functional NK cell assays, microscopy, and a Stat5b-/- mouse model to elucidate the effect of impaired and/or absent STAT5b on NK cell development and function. RESULTS: This alteration generated a nonfunctional CD56bright NK cell subset characterized by low cytokine production. The CD56dim NK cell subset had decreased expression of perforin and CD16 and a greater frequency of cells expressing markers of immature NK cells. We observed low NK cell numbers and impaired NK cell maturation, suggesting that STAT5b is involved in terminal NK cell maturation in Stat5b-/- mice. Furthermore, human STAT5b-deficient NK cells had low cytolytic capacity, and fixed-cell microscopy showed poor convergence of lytic granules. This was accompanied by decreased expression of costimulatory and activating receptors. Interestingly, granule convergence and cytolytic function were restored after IL-2 stimulation. CONCLUSIONS: Our results show that in addition to the impaired terminal maturation of NK cells, human STAT5b mutation leads to impairments in early activation events in NK cell lytic synapse formation. Our data provide further insight into NK cell defects caused by STAT5b deficiency.

8.
Blood ; 134(18): 1510-1516, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31501153

RESUMO

Dysregulated immune responses are essential underlying causes of a plethora of pathologies including cancer, autoimmunity, and immunodeficiency. We here investigated 4 patients from unrelated families presenting with immunodeficiency, autoimmunity, and malignancy. We identified 4 distinct homozygous mutations in TNFRSF9 encoding the tumor necrosis factor receptor superfamily member CD137/4-1BB, leading to reduced, or loss of, protein expression. Lymphocytic responses crucial for immune surveillance, including activation, proliferation, and differentiation, were impaired. Genetic reconstitution of CD137 reversed these defects. CD137 deficiency is a novel inborn error of human immunity characterized by lymphocytic defects with early-onset Epstein-Barr virus (EBV)-associated lymphoma. Our findings elucidate a functional role and relevance of CD137 in human immune homeostasis and antitumor responses.

10.
Ann Allergy Asthma Immunol ; 123(5): 444-453, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31446132

RESUMO

OBJECTIVE: To review selected published studies related to the diagnostic evaluation of antibody deficiency. DATA SOURCES: Published literature. STUDY SELECTIONS: Studies related to the diagnostic evaluation of antibody deficiency and existing recommendations were selected. RESULTS: Many primary immunodeficiency diseases include humoral deficiency. Practical tests used in the clinical evaluation of patients for possible antibody deficiency include immunoglobulin measurement, specific antibody titers, and B-cell enumeration and phenotyping. CONCLUSION: Clinically available tests can be used to readily evaluate patients for antibody deficiencies.

13.
Nat Commun ; 10(1): 3106, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308374

RESUMO

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.

14.
J Exp Med ; 216(9): 2038-2056, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217193

RESUMO

Autosomal recessive IRF7 and IRF9 deficiencies impair type I and III IFN immunity and underlie severe influenza pneumonitis. We report three unrelated children with influenza A virus (IAV) infection manifesting as acute respiratory distress syndrome (IAV-ARDS), heterozygous for rare TLR3 variants (P554S in two patients and P680L in the third) causing autosomal dominant (AD) TLR3 deficiency. AD TLR3 deficiency can underlie herpes simplex virus-1 (HSV-1) encephalitis (HSE) by impairing cortical neuron-intrinsic type I IFN immunity to HSV-1. TLR3-mutated leukocytes produce normal levels of IFNs in response to IAV. In contrast, TLR3-mutated fibroblasts produce lower levels of IFN-ß and -λ, and display enhanced viral susceptibility, upon IAV infection. Moreover, the patients' iPSC-derived pulmonary epithelial cells (PECs) are susceptible to IAV. Treatment with IFN-α2b or IFN-λ1 rescues this phenotype. AD TLR3 deficiency may thus underlie IAV-ARDS by impairing TLR3-dependent, type I and/or III IFN-mediated, PEC-intrinsic immunity. Its clinical penetrance is incomplete for both IAV-ARDS and HSE, consistent with their typically sporadic nature.

15.
Pediatr Rev ; 40(5): 229-242, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31043442
18.
Am J Hum Genet ; 104(3): 422-438, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773277

RESUMO

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.

19.
PLoS One ; 14(2): e0212443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30759143

RESUMO

Regulation of Natural Killer (NK) cell activity is achieved by the integration of both activating and inhibitory signals acquired at the immunological synapse with potential target cells. NK cells express paired receptors from the immunoglobulin family which share common ligands from the nectin family of adhesion molecules. The activating receptor CD226 (DNAM-1) binds to nectin-2 and CD155, which are also recognized by the inhibitory receptor TIGIT. The third receptor in this family is CD96, which is less well characterized and may have different functions in human and mouse models. Human CD96 interacts with CD155 and ligation of this receptor activates NK cells, while in mice the presence of CD96 correlates with decreased NK cell activation. Mouse CD96 also binds nectin-1, but the effect of this interaction has not yet been determined. Here we show that human nectin-1 directly interacts with CD96 in vitro. The binding site for CD96 is located on the nectin-1 V-domain, which comprises a canonical interface that is shared by nectins to promote cell adhesion. The affinity of nectin-1 for CD96 is lower than for other nectins such as nectin-3 and nectin-1 itself. However, the affinity of nectin-1 for CD96 is similar to its affinity for herpes simplex virus glycoprotein D (HSV gD), which binds the nectin-1 V-domain during virus entry. The affinity of human CD96 for nectin-1 is lower than for its known activating ligand CD155. We also found that human erythroleukemia K562 cells, which are commonly used as susceptible targets to assess NK cell cytotoxicity did not express nectin-1 on their surface and were resistant to HSV infection. When expressed in K562 cells, nectin-1-GFP accumulated at cell contacts and allowed HSV entry. Furthermore, overexpression of nectin-1-GFP led to an increased susceptibility of K562 cells to NK-92 cell cytotoxicity.

20.
Front Immunol ; 10: 68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774629

RESUMO

CLEC16A locus polymorphisms have been associated with several autoimmune diseases. We overexpressed CLEC16A in YTS natural killer (NK) cells and observed reduced NK cell cytotoxicity and IFN-γ release, delayed dendritic cell (DC) maturation, decreased conjugate formation, cell-surface receptor downregulation and increased autophagy. In contrast, siRNA mediated knockdown resulted in increased NK cell cytotoxicity, reversal of receptor expression and disrupted mitophagy. Subcellular localization studies demonstrated that CLEC16A is a cytosolic protein that associates with Vps16A, a subunit of class C Vps-HOPS complex, and modulates receptor expression via autophagy. Clec16a knockout (KO) in mice resulted in altered immune cell populations, increased splenic NK cell cytotoxicity, imbalance of dendritic cell subsets, altered receptor expression, upregulated cytokine and chemokine secretion. Taken together, our findings indicate that CLEC16A restrains secretory functions including cytokine release and cytotoxicity and that a delicate balance of CLEC16A is needed for NK cell function and homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA