Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Front Immunol ; 10: 1394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281317


In colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) are the most abundant component from the tumor microenvironment (TM). CAFs facilitate tumor progression by inducing angiogenesis, immune suppression and invasion, thus altering the organization/composition of the extracellular matrix (i.e., desmoplasia) and/or activating epithelial-mesenchymal transition (EMT). Soluble factors from the TM can also contribute to cell invasion through secretion of cytokines and recently, IL-33/ST2 pathway has gained huge interest as a protumor alarmin, promoting progression to metastasis by inducing changes in TM. Hence, we analyzed IL-33 and ST2 content in tumor and healthy tissue lysates and plasma from CRC patients. Tissue localization and distribution of these molecules was evaluated by immunohistochemistry (using localization reference markers α-smooth muscle actin or α-SMA and E-cadherin), and clinical/histopathological information was obtained from CRC patients. In vitro experiments were conducted in primary cultures of CAFs and normal fibroblasts (NFs) isolated from tumor and healthy tissue taken from CRC patients. Additionally, migration and proliferation analysis were performed in HT29 and HCT116 cell lines. It was found that IL-33 content increases in left-sided CRC patients with lymphatic metastasis, with localization in tumor epithelia associated with abundant desmoplasia. Although ST2 content showed similarities between tumor and healthy tissue, a decreased immunoreactivity was observed in left-sided tumor stroma, associated to metastasis related factors (advanced stages, abundant desmoplasia, and presence of tumor budding). A principal component analysis (including stromal and epithelial IL-33/ST2 and α-SMA immunoreactivity with extent of desmoplasia) allowed us to distinguish clusters of low, intermediate and abundant desmoplasia, with potential to develop a diagnostic signature with benefits for further therapeutic targets. IL-33 transcript levels from CAFs directly correlated with CRC cell line migration induced by CAFs conditioned media, with rhIL-33 inducing a mesenchymal phenotype in HT29 cells. These results indicate a role of IL-33/ST2 in tumor microenvironment, specifically in the interaction between CAFs and epithelial tumor cells, thus contributing to invasion and metastasis in left-sided CRC, most likely by activating desmoplasia.

Asian J Androl ; 21(5): 460-467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880686


One of the factors promoting tumoral progress is the abnormal activation of the epithelial-mesenchymal transition (EMT) program which has been associated with chemoresistance in tumoral cells. The transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), a key EMT activator, has recently been related to docetaxel resistance, the main chemotherapeutic used in advanced prostate cancer treatment. The mechanisms involved in this protective effect are still unclear. In a previous work, we demonstrated that ZEB1 expression induced an EMT-like phenotype in prostate cancer cell lines. In this work, we used prostate cancer cell lines 22Rv1 and DU145 to study the effect of ZEB1 modulation on docetaxel resistance and its possible mechanisms. The results showed that ZEB1 overexpression conferred to 22Rv1 cell resistance to docetaxel while its silencing made DU145 cells more sensitive to it. Analysis of resistance markers showed no presence of ATP-binding cassette subfamily B member 1 (MDR1) and no changes in breast cancer resistance protein (BCRP) or ATP-binding cassette subfamily C member 10 (MRP7). However, a correlation between ZEB1, multidrug resistance-associated protein 1 (MRP1), and ATP-binding cassette subfamily C member 4 (MRP4) expression was observed. MRP4 inhibition, using MK571, resensitized cells with ZEB1 overexpression to docetaxel treatment. In addition, modulation of ZEB1 and subsequent change in MRP4 expression correlated with a lower apoptotic response to docetaxel, characterized by lower B-cell lymphoma 2 (Bcl2), high BCL2-associated X protein (Bax), and high active caspase 3 expression. The response to docetaxel in our model seems to be mediated mainly by activation of the apoptotic death program. Our results showed that modulation of MRP4 could be a mediator of ZEB1-related resistance to docetaxel in prostate cancer, making it a possible marker for chemotherapy response in patients who do not express MDR1.

Asian J Androl ; 20(3): 294-299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29271397


It has been reported that one of the factors that promotes tumoral progression is the abnormal activation of the epithelial-mesenchymal transition program. This process is associated with tumoral cells acquiring invasive and malignant properties and has the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) as one of its main activators. However, the role of ZEB1 in promoting malignancy in prostate cancer (PCa) is still unclear. Here, we report that ZEB1 expression correlates with Gleason score in PCa samples and that expression of ZEB1 regulates epithelial-mesenchymal transition and malignant characteristics in PCa cell lines. The results showed that ZEB1 expression is higher in samples of higher malignancy and that overexpression of ZEB1 was able to induce epithelial-mesenchymal transition by upregulating the mesenchymal marker Vimentin and downregulating the epithelial marker E-Cadherin. On the contrary, ZEB1 silencing repressed Vimentin expression and upregulated E-Cadherin. ZEB1 expression conferred enhanced motility and invasiveness and a higher colony formation capacity to 22Rv1 cells whereas DU145 cells with ZEB1 silencing showed a decrease in those same properties. The results showed that ZEB1 could be a key promoter of tumoral progression toward advanced stages of PCa.

Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Gradação de Tumores , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia , Vimentina/metabolismo