Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 636: 363-377, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638575

RESUMO

This study presents a novel method to correlate the mass and charge transfer kinetics during the electrophoretic deposition of nanocrystal films by using a purpose-built double quartz crystal microbalance combined with simultaneous current-measurement. Our data support a multistep process for film formation: generation of charged nanocrystal flux, charge transfer at the electrode, and polarization of neutral nanocrystals near the electrode surface. The polarized particles are then subject to dielectrophoretic forces that reduce diffusion away from the interface, generating a sufficiently high neutral particle concentration at the interface to form a film. The correlation of mass and charge transfer enables quantification of the nanocrystal charge, the fraction of charged nanocrystals, and the initial sticking coefficient of the particles. These quantities permit calculation of the film thickness, providing a theoretical basis for using concentration and voltage as process parameters to grow films of targeted thicknesses.

2.
RSC Adv ; 12(6): 3721-3728, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425363

RESUMO

Exceptionally coercive SmCo5 particles are produced through calcium vapor reduction of SmCo5O9 powders synthesized by flame spray pyrolysis. The resulting powders are composed of oblate hexagonal particles approximately 2 microns across with smooth surfaces. This microstructure yields record-breaking room temperature coercivity H c,i >80 kOe, or >60 kOe when combined with advanced manufacturing approaches such as electrophoretic deposition or molding with tetraglyme inks. These techniques enable straightforward low-loss fabrication of bulk parts. The high coercivity is extremely robust at elevated temperatures, exceeding 10 kOe even at 600 °C. The oxide precursor approach removes the need for strict environmental control during synthesis that is common to other nanoparticle-based routes and can readily be scaled to kilogram quantities of feedstock production. Magnet powders produced by calcium vapor reduction can thus function as the building blocks for traditional or advanced manufacturing techniques, while the high coercivity enables consistent performance across a wide range of temperatures.

3.
Adv Sci (Weinh) ; 9(15): e2200629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338600

RESUMO

Flexible electronic skin with features that include sensing, processing, and responding to stimuli have transformed human-robot interactions. However, more advanced capabilities, such as human-like self-protection modalities with a sense of pain, sign of injury, and healing, are more challenging. Herein, a novel, flexible, and robust diffusive memristor based on a copolymer of chlorotrifluoroethylene and vinylidene fluoride (FK-800) as an artificial nociceptor (pain sensor) is reported. Devices composed of Ag/FK-800/Pt have outstanding switching endurance >106  cycles, orders of magnitude higher than any other two-terminal polymer/organic memristors in literature (typically 102 -103 cycles). In situ conductive atomic force microscopy is employed to dynamically switch individual filaments, which demonstrates that conductive filaments correlate with polymer grain boundaries and FK-800 has superior morphological stability under repeated switching cycles. It is hypothesized that the high thermal stability and high elasticity of FK-800 contribute to the stability under local Joule heating associated with electrical switching. To mimic biological nociceptors, four signature nociceptive characteristics are demonstrated: threshold triggering, no adaptation, relaxation, and sensitization. Lastly, by integrating a triboelectric generator (artificial mechanoreceptor), memristor (artificial nociceptor), and light emitting diode (artificial bruise), the first bioinspired injury response system capable of sensing pain, showing signs of injury, and healing, is demonstrated.


Assuntos
Nociceptores , Polímeros , Condutividade Elétrica , Humanos , Mecanorreceptores , Dor
4.
J Phys Chem Lett ; 12(49): 11980-11986, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34882417

RESUMO

Ion (de)hydration is a key rate-determining step in interfacial processes from corrosion to electrochemical energy storage. However, predicting the kinetics of ion (de)hydration remains challenging, prompting the use of static proxies such as hydration energy and valence. While useful for assessing thermodynamic preferences, such descriptors cannot fully capture the dynamical softness of the hydration shell that dictates kinetics. Accordingly, we use first-principles molecular dynamics to analyze hydration shell softness for a diverse set of metal cations. Three dynamic metrics are introduced to intuitively describe the bond rigidity, shape deformability, and exchange fluidity of the solvation shell. Together, these metrics capture the relevant physics in the static descriptors, while offering a far more complete and efficient representation for the overall propensity for (de)hydration. Application to the hydrated ion set demonstrates a weak connection between dynamical softness and hydration energy, confirming that dynamical descriptors of hydration are key for correctly describing ion transfer processes.

5.
J Phys Condens Matter ; 32(49): 495803, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32914765

RESUMO

The role of finite size effects on magnetic order has been investigated in samarium nanoparticles prepared by physical vapor deposition. A dense layer composed of distinct nanoparticles with a mean particle diameter of 26 nm was deposited on a diamagnetic substrate. M(T) measurements identify the expected pair of antiferromagnetic ordering temperatures in the bulk Sm precursor, at 113 K and 14 K, where the magnetic unit cell for the lower ordering temperature is 10.36 nm along the c-axis. The high temperature ordering of the hexagonal sites in the Sm nanocrystals is slightly decreased with respect to that of bulk Sm, while the low temperature transition associated with the cubic sites is significantly suppressed. The observed changes are attributed to finite size effects, with ordering suppressed as the particle radius approaches the length of the magnetic unit cell, and surface moments become more prominent.

6.
Nat Commun ; 9(1): 4211, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310061

RESUMO

The structure of nanocrystal superlattices has been extensively studied and well documented, however, their assembly process is poorly understood. In this work, we demonstrate an in situ space- and time-resolved small angle X-ray scattering measurement that we use to probe the assembly of silver nanocrystal superlattices driven by electric fields. The electric field creates a nanocrystal flux to the surface, providing a systematic means to vary the nanocrystal concentration near the electrode and thereby to initiate nucleation and growth of superlattices in several minutes. Using this approach, we measure the space- and time-resolved concentration and polydispersity gradients during deposition and show how they affect the superlattice constant and degree of order. We find that the field induces a size-selection effect that can reduce the polydispersity near the substrate by 21% leading to better quality crystals and resulting in field strength-dependent superlattice lattice constants.

7.
Nano Lett ; 17(6): 3862-3869, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28511013

RESUMO

Nanocrystal superlattices are typically fabricated by either solvent evaporation or destabilization methods that require long time periods to generate highly ordered structures. In this paper, we report for the first time the use of electric fields to reversibly drive nanocrystal assembly into superlattices without changing solvent volume or composition, and show that this method only takes 20 min to produce polyhedral colloidal crystals, which would otherwise need days or weeks. This method offers a way to control the lattice constants and degree of preferential orientation for superlattices and can suppress the uniaxial superlattice contraction associated with solvent evaporation. In situ small-angle X-ray scattering experiments indicated that nanocrystal superlattices were formed while solvated, not during drying.

8.
ACS Nano ; 9(5): 4698-705, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25858296

RESUMO

We describe the synthesis and characterization of monolithic, ultralow density WS2 and MoS2 aerogels, as well as a high surface area MoS2/graphene hybrid aerogel. The monolithic WS2 and MoS2 aerogels are prepared via thermal decomposition of freeze-dried ammonium thio-molybdate (ATM) and ammonium thio-tungstate (ATT) solutions, respectively. The densities of the pure dichalcogenide aerogels represent 0.4% and 0.5% of full density MoS2 and WS2, respectively, and can be tailored by simply changing the initial ATM or ATT concentrations. Similar processing in the presence of the graphene aerogel results in a hybrid structure with MoS2 sheets conformally coating the graphene scaffold. This layered motif produces a ∼50 wt % MoS2 aerogel with BET surface area of ∼700 m(2)/g and an electrical conductivity of 112 S/m. The MoS2/graphene aerogel shows promising results as a hydrogen evolution reaction catalyst with low onset potential (∼100 mV) and high current density (100 mA/cm(2) at 260 mV).

10.
ACS Appl Mater Interfaces ; 3(4): 1077-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21401211

RESUMO

The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites.

11.
Philos Trans A Math Phys Eng Sci ; 368(1917): 1937-61, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20308110

RESUMO

The biomineral calcium hydrogen phosphate dihydrate (CaHPO(4).2H(2)O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite's excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Anisotropia , Cálcio/química , Cristalização , Difosfonatos/química , Elétrons , Cinética , Microscopia de Varredura por Sonda/métodos , Modelos Estatísticos , Oxalatos/química , Fosfatos/química , Espalhamento de Radiação , Sefarose/química
12.
Biointerphases ; 5(4): 120-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21219033

RESUMO

The authors have studied microstructure evolution during thermally induced phase separation in a class of binary supported lipid bilayers using a quantitative application of imaging ellipsometry. The bilayers consist of binary mixtures consisting of a higher melting glycosphingolipid, galactosylceramide (GalCer), which resides primarily in the outer leaflet, and a lower melting, unsaturated phospholipid, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Three different bilayer compositions of GalCer/DLPC mixtures at 35:65, 20:80, and 10:90 molar ratios were cooled at controlled rates from their high-temperature homogeneous phase to temperatures corresponding to their phase coexistence regime and imaged in real time using imaging ellipsometry. During the thermotropic course of GalCer gelation, we find that two distinct types of morphological features modulate. First, the formation and growth of chain and fractal-like defects ascribed to the net change in molecular areas during the phase transition. The formation of these defects is consistent with the expected contraction in the molecular area during the liquid crystalline to gel-phase transition. Second, the nucleation and growth of irregularly shaped gel-phase domains, which exhibit either line-tension dominated compact shape or dendritic domains with extended interfaces. Quantifying domain morphology within the fractal framework reveals a close correspondence, and the quantization of the transition width confirms previous estimates of reduced phase transition cooperativity in supported bilayers. A comparison of domain properties indicates that thermal history, bilayer composition, and cooling rate all influence microstructure details including shapes, sizes, and distributions of domains and defects: At lower cooling rates and lower GalCer fractions compact domains form and at higher GalCer fractions (or at higher cooling rates) dendritic domains are evident. This transition of domain morphology from compact shapes to dendritic shapes at higher cooling rates and higher relative fractions of GalCer suggests kinetic control of shape equilibration in these phospho- and glycolipid mixtures.


Assuntos
Galactosilceramidas/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Algoritmos , Técnicas de Química Analítica , Galactosilceramidas/metabolismo , Transição de Fase , Fosfatidilcolinas/metabolismo , Termodinâmica
13.
J Biophotonics ; 2(5): 322-32, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19373853

RESUMO

Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.


Assuntos
DNA/química , DNA/metabolismo , Espermatozoides/citologia , Espermatozoides/patologia , Cromatina/metabolismo , Humanos , Masculino , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Proteínas/química , Proteínas/metabolismo , Análise Espectral Raman , Espermatozoides/metabolismo , Fatores de Tempo
15.
Langmuir ; 24(14): 7058-60, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18557638

RESUMO

The in vivo formation of calcium oxalate concretions having calcium phosphate nidi is simulated in an in vitro (37 degrees C, pH 6.0) dual constant composition (DCC) system undersaturated (sigma DCPD = -0.330) with respect to brushite (DCPD, CaHPO 4 . 2H 2O) and slightly supersaturated (sigma COM = 0.328) with respect to calcium oxalate monohydrate (COM, CaC2O4 . H2O). The brushite dissolution provides calcium ions that raise the COM supersaturation, which is heterogeneously nucleated either on or near the surface of the dissolving calcium phosphate crystals. The COM crystallites may then aggregate, simulating kidney stone formation. Interestingly, two intermediate phases, anhydrous dicalcium phosphate (monetite, CaHPO4) and calcium oxalate trihydrate (COT), are also detected by X-ray diffraction during this brushite-COM transformation. In support of clinical observations, the results of these studies demonstrate the participation of calcium phosphate phases in COM crystallization providing a possible physical chemical mechanism for kidney stone formation.


Assuntos
Cálculos Renais/química , Oxalatos/química , Fosfatos/química , Fosfatos de Cálcio , Cristalização , Soluções , Difração de Raios X
16.
Soft Matter ; 4(6): 1161-1164, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32907256

RESUMO

Via imaging ellipsometry, we study the phase transition dynamics induced by selective gelation of one component in a binary supported phopholipid bilayer. We find the modulation of two attendant morphological features: emergence of extended defect chains due to a net change in the molecular areas and fractal-like domains suggesting weak line tension. A time-lapse analysis of the ellipsometric images reveals the cluster size of 4-20 molecules undergoing gelation indicating weak cooperativity. These results demonstrate the use of ellipsometry for in situ, label-free, non-contact, and large-area imaging of dynamics in interfacial films.

17.
Biophys J ; 94(7): 2691-7, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18065459

RESUMO

Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts.


Assuntos
Galactosilceramidas/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Microdomínios da Membrana/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Cristalização/métodos , Cinética , Conformação Molecular , Transição de Fase , Tensão Superficial
18.
Langmuir ; 24(4): 1219-24, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18062709

RESUMO

Here, we examine by atomic force microscopy (AFM) the kinetics and morphology of lipid domain growth during lipid phase separation by rapid thermal cooling of fully mixed two-component supported lipid bilayers. At the undercooled temperatures chosen, symmetric 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-rich domains favored slower reaction-limited growth whereas asymmetric galactosylceramide (GalCer)-rich domains favored faster diffusion-limited growth, indicated by shape factors and kinetic exponents. Because kinetically limited conditions could be accessed, we were able to estimate the activation energy barrier (approximately 16kT) and lateral diffusion coefficient (approximately 0.20 microm2/s) of lipid molecular addition to a growing domain. We discuss these results with respect to transition states, obstructed diffusion, and the necessity for coordinating growth in both leaflets in a symmetric lipid domain.


Assuntos
Galactosilceramidas/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Difusão , Cinética , Microscopia de Força Atômica/métodos , Temperatura , Termodinâmica
19.
Nano Lett ; 7(10): 3035-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17887798

RESUMO

Direct growth of a sharp carbon nanotube (CNT) probe on a very thin and highly flexible cantilever by plasma-enhanced chemical vapor deposition (PECVD) is desirable for atomic force microscopy (AFM) of nanoscale features on soft or fragile materials. Plasma-induced surface stresses in such fabrication processes, however, tend to cause serious bending of these cantilevers, which makes the CNT probe unsuitable for AFM measurements. Here, we report a new tunable CNT growth technique that controls cantilever bending during deposition, thereby enabling the creation of either flat or deliberately curved AFM cantilevers containing a CNT probe. By introducing hydrogen gas to the (acetylene + ammonia) feed gas during CNT growth and adjusting the ammonia to hydrogen flow ratio, the cantilever surface stress can be altered from compressive to tensile stress, and in doing so controlling the degree of cantilever bending. The CNT probes grown under these conditions have high aspect ratios and are robust. Contact-mode imaging has been demonstrated using these probe tips. Such CNT probes can be useful for bio-imaging involving DNA and other delicate biological features in a liquid environment.


Assuntos
Cristalização/métodos , Microscopia de Força Atômica/métodos , Técnicas de Sonda Molecular , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Transdutores , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
20.
Langmuir ; 23(11): 5875-7, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17451264

RESUMO

This work presents a novel method for experimentally quantifying interfacial line tension, which can be readily applied to study a wide variety of different lipid mixtures exhibiting phase coexistence. The method combines AFM imaging of lipid domain nucleation with classical nucleation theories. The results, using symmetric and asymmetric domains, permit the prediction of key physical parameters (critical nuclei size and nucleation rate) in multicomponent bilayer systems with implications toward understanding the dynamic nature of submicrometer domains (i.e., lipid rafts) in cell membranes.


Assuntos
Bicamadas Lipídicas/química , Galactosilceramidas/química , Técnicas In Vitro , Microdomínios da Membrana/química , Microscopia de Força Atômica , Fosfatidilcolinas/química , Tensão Superficial , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA