Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(48): 23132-23138, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793595

RESUMO

Quantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.

2.
ACS Nano ; 13(7): 7771-7779, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31188552

RESUMO

Light-matter interaction at the atomic scale rules fundamental phenomena such as photoemission and lasing while enabling basic everyday technologies, including photovoltaics and optical communications. In this context, plasmons, the collective electron oscillations in conducting materials, are important because they allow the manipulation of optical fields at the nanoscale. The advent of graphene and other two-dimensional crystals has pushed plasmons down to genuinely atomic dimensions, displaying appealing properties such as a large electrical tunability. However, plasmons in these materials are either too broad or lying at low frequencies, well below the technologically relevant near-infrared regime. Here, we demonstrate sharp near-infrared plasmons in lithographically patterned wafer-scale atomically thin silver crystalline films. Our measured optical spectra reveal narrow plasmons (quality factor of ∼4), further supported by a low sheet resistance comparable to bulk metal in few-atomic-layer silver films down to seven Ag(111) monolayers. Good crystal quality and plasmon narrowness are obtained despite the addition of a thin passivating dielectric, which renders our samples resilient to ambient conditions. The observation of spectrally sharp and strongly confined plasmons in atomically thin silver holds great potential for electro-optical modulation and optical sensing applications.

3.
Phys Rev Lett ; 123(26): 266805, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951458

RESUMO

On-surface metal-organic nanoporous networks generally refer to adatom coordinated molecular arrays, which are characterized by the presence of well-defined and regular nanopores. These periodic structures constructed using two types of components confine the surface electrons of the substrate within their nanocavities. However, the confining (or scattering) strength that individual building units exhibit is a priori unknown. Here, we study the modification of the substrate's surface electrons by the interaction with a Cu-coordinated TPyB metal-organic network formed on Cu(111) and disentangle the scattering potentials and confinement properties. By means of STM and angle-resolved photoemission spectroscopy we find almost unperturbed free-electron-like states stemming from the rather weak electron confinement that yields significant coupling between adjacent pores. Electron plane wave expansion simulations match the superlattice induced experimental electronic structure, which features replicating bands and energy renormalization effects. Notably, the electrostatic potential landscape obtained from our ab initio calculations suggests that the molecules are the dominant scattering entities while the coordination metal atoms sandwiched between them act as leaky channels. These metal atom transmission conduits facilitate and enhance the coupling among quantum dots, which are prone to be exploited to engineer the electronic structure of surface electron gases.

4.
J Am Chem Soc ; 140(47): 16245-16252, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431270

RESUMO

Understanding nanoparticle catalysis requires novel approaches in which adjoining crystal orientations can be studied under the same reactive conditions. Here we use a curved palladium crystal and near-ambient pressure X-ray photoemission spectroscopy to characterize chemical species during the catalytic oxidation of CO in a whole set of surfaces vicinal to the (111) direction simultaneously. By stabilizing the reaction at fixed temperatures around the ignition point, we observe a strong variation of the catalytic activity across the curved surface. Such spatial modulation of the reaction stage is straightforwardly mapped through the photoemission signal from active oxygen species and poisoning CO, which are shown to coexist in a transient regime that depends on the vicinal angle. Line-shape analysis and direct comparison with ultrahigh vacuum experiments help identifying and quantifying all such surface species, allowing us to reveal the presence of surface oxides during reaction ignition and cooling-off.

5.
ACS Nano ; 12(10): 10537-10544, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30295463

RESUMO

Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.

6.
J Phys Chem Lett ; 9(10): 2510-2517, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688007

RESUMO

The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

7.
J Phys Chem Lett ; 9(1): 25-30, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29220194

RESUMO

Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band's effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theory.

8.
Nat Commun ; 8(1): 787, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983115

RESUMO

Quantum dots are known to confine electrons within their structure. Whenever they periodically aggregate into arrays and cooperative interactions arise, novel quantum properties suitable for technological applications show up. Control over the potential barriers existing between neighboring quantum dots is therefore essential to alter their mutual crosstalk. Here we show that precise engineering of the barrier width can be experimentally achieved on surfaces by a single atom substitution in a haloaromatic compound, which in turn tunes the confinement properties through the degree of quantum dot intercoupling. We achieved this by generating self-assembled molecular nanoporous networks that confine the two-dimensional electron gas present at the surface. Indeed, these extended arrays form up on bulk surface and thin silver films alike, maintaining their overall interdot coupling. These findings pave the way to reach full control over two-dimensional electron gases by means of self-assembled molecular networks.Arrays of quantum dots can exhibit a variety of quantum properties, being sensitive to their spacing. Here, the authors fine tune interdot coupling using hexagonal molecular networks in which the dots are separated by single or double haloaromatic compounds, structurally identical but for a single atom.

9.
ACS Nano ; 10(9): 9000-8, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27548516

RESUMO

Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR's chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.

10.
Small ; 12(28): 3757-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27276517

RESUMO

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

11.
J Am Chem Soc ; 138(17): 5685-92, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27115554

RESUMO

Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor's π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule-semiconductor devices.

12.
ACS Nano ; 10(5): 5131-44, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27110642

RESUMO

The local interaction between graphene and a host substrate strongly determines the actual properties of the graphene layer. Here we show that scanning tunneling microscopy (STM) can selectively help to visualize either the graphene layer or the substrate underneath, or even both at the same time, providing a comprehensive picture of this coupling with atomic precision and high energy resolution. We demonstrate this for graphene on Cu(111). Our spectroscopic data show that, in the vicinity of the Fermi level, graphene π bands are well preserved presenting a small n-doping induced by Cu(111) surface state electrons. Such results are corroborated by Angle-Resolved Photoemission Spectra (ARPES) and Density Functional Theory with van der Waals (DFT + vdW) calculations. Graphene tunable transparency also allows the investigation of the interaction between the substrate and foreign species (such as atomic H or C vacancies) on the graphene layer. Our calculations explain graphene tunable transparency in terms of the rather different decay lengths of the graphene Dirac π states and the metal surface state, suggesting that it should apply to a good number of graphene/substrate systems.

13.
ACS Nano ; 10(2): 2644-51, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26841052

RESUMO

The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product's energy level alignment can be tuned without compromising the charge carrier's mobility.

14.
Nano Lett ; 16(3): 2017-22, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26752001

RESUMO

A vicinal rutile TiO2(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (Obr vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (St) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of Obr vacs plus St protrusions at steps, suggesting that both Obr vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti(3+) polaron near steps and at terraces.

15.
Adv Mater ; 28(7): 1340-68, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26662076

RESUMO

Increasingly high hopes are being placed on organic semiconductors for a variety of applications. Progress along these lines, however, requires the design and growth of increasingly complex systems with well-defined structural and electronic properties. These issues have been studied and reviewed extensively in single-component layers, but the focus is gradually shifting towards more complex and functional multi-component assemblies such as donor-acceptor networks. These blends show different properties from those of the corresponding single-component layers, and the understanding on how these properties depend on the different supramolecular environment of multi-component assemblies is crucial for the advancement of organic devices. Here, our understanding of two-dimensional multi-component layers on solid substrates is reviewed. Regarding the structure, the driving forces behind the self-assembly of these systems are described. Regarding the electronic properties, recent insights into how these are affected as the molecule's supramolecular environment changes are explained. Key information for the design and controlled growth of complex, functional multicomponent structures by self-assembly is summarized.

16.
J Phys Chem Lett ; 7(1): 90-5, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26651535

RESUMO

We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also of the fingerprints associated with the interface charge transfer.

17.
Nat Commun ; 6: 8903, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26561388

RESUMO

Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Through such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. These results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.

18.
Nano Lett ; 14(6): 2977-81, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24798248

RESUMO

Controlling anisotropy and exchange coupling in patterned magnetic nanostructures is the key for developing advanced magnetic storage and spintronic devices. We report on the antiferromagnetic interaction between a Co nanodot array and its supporting GdAu2 nanotemplate that induces large anisotropy values in individual Co nanodots. In clear contrast with nonmagnetic Au substrates, GdAu2 triggers an earlier switch from out-of-plane anisotropy in monatomic high dots to in-plane when the dot height becomes biatomic.

19.
J Phys Condens Matter ; 24(39): 395006, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22941915

RESUMO

The photoemission cross-section of the Shockley surface state of Au(111) is studied over a wide range of photon energies both experimentally and theoretically. The measurements are fully understood based on the theoretical analysis within a one-step ab initio theory of photoemission. The constant initial state spectrum is shown to be very sensitive to the structure of the topmost atomic layer. A maximum in the constant initial spectrum at 60 eV is identified as a fingerprint of the Au(111) surface reconstruction.

20.
Phys Chem Chem Phys ; 13(10): 4220-3, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21283906

RESUMO

We present a route to change the "compositional" order of highly crystalline binary layers comprising diindenoperylene and copper-phthalocyanines from two- to one-dimensional periodicity. This is achieved by exchanging fluorine with hydrogen atoms in the phthalocyanines, thereby reducing the C-F···H-C interactions and allowing the interplay of long-range electrostatic interactions in mesoscopic phases. Linear patterns are thus obtained, whose periodicity can be additionally tuned by an appropriate stoichiometry of the components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA