Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
J Nephrol ; 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32440840

RESUMO

The most common cause of liver disease worldwide is now non-alcoholic fatty liver disease (NAFLD). NAFLD refers to a spectrum of disease ranging from steatosis to non-alcoholic steatohepatitis, causing cirrhosis, and ultimately hepatocellular carcinoma. However, the impact of NAFLD is not limited to the liver. NAFLD has extra-hepatic consequences, most notably, cardiovascular and renal disease. NAFLD and chronic kidney disease share pathogenic mechanisms including insulin resistance, lipotoxicity, inflammation and oxidative stress. Not surprisingly, there has been a recent surge in efforts to manage NAFLD in an integrated way that not only protects the liver but also delays comorbidities such as chronic kidney disease. This concept of simultaneously addressing the main disease target and comorbidities is key to improve outcomes, as recently demonstrated by clinical trials of SGLT2 inhibitors and GLP1 receptor agonists in diabetes. HIF activators, already marketed in China, also have the potential to protect both liver and kidney, as suggested by preclinical data. This review concisely discusses efforts at identifying common pathogenic pathways between NAFLD and chronic kidney disease with an emphasis on potential paradigm shifts in diagnostic workup and therapeutic management.

3.
J Phys Chem Lett ; 11(9): 3466-3472, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293901

RESUMO

The carboxyl (COOH) side chain groups of amino acids, such as aspartic acid, play an important role in biochemical processes, including enzymatic proton transport. In many theoretical studies, it was found that the (bio)chemical reactivity of the carboxyl group strongly depends on the conformation of this group. Interestingly, up to now there has been no experimental investigation of the geometry and the stability of different COOH conformers under biorelevant conditions. Here, we investigate the conformational isomerism of the side chain COOH group of N-acetyl aspartic acid amide using polarization-resolved two-dimensional infrared spectroscopy. We find that the carboxyl group shows two distinct near-planar conformers (syn and anti) when dissolved in water at room temperature. Both conformers are significantly populated in aqueous solution (75 ± 10% and 25 ± 10% for syn and anti, respectively). Molecular dynamics simulations show that the anti conformer interacts more strongly with water molecules than the syn conformer, explaining why this conformer is significantly present in aqueous solution.

4.
Adv Ther ; 37(Suppl 2): 62-72, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32236874

RESUMO

Ten percent of the adult population has chronic kidney disease (CKD), which is diagnosed when the glomerular filtration rate (GFR) is below 60 mL/min per 1.73 m2 or when albuminuria is above 30 mg/day. The numerical thresholds were chosen because they are associated with an increased risk of CKD progression or premature death within a wider scenario of accelerated aging. Indeed, CKD is one of the fastest growing causes of death worldwide. A decreased GFR is associated with the accumulation of uraemic toxins that may promote tissue and organ damage. However, CKD may be diagnosed when the GFR is completely normal, as long as there is pathological albuminuria. A key unanswered question to stem the rise of CKD-associated deaths is whether the association between isolated albuminuria (when the GFR is normal) and premature death is causal. The recent demonstration that albuminuria per se directly suppresses the production of the anti-aging factor Klotho by kidney tubular cells may be one of the first steps to address the causality of the albuminuria-premature death-accelerated aging association. This hypothesis should be tested in interventional studies that should draw from translational science advances. Thus, the observation that albuminuria decreases Klotho production through epigenetic mechanisms implies that Klotho downregulation may persist after the correction of albuminuria, and innovative therapeutic approaches are needed to restore Klotho production. On the basis of recent literature, these may include manipulation of NF-kappaB regulators such as B cell lymphoma 3 protein (BCL-3), and epigenetic regulators such as histone deacetylases, or the repurposing of drugs such as pentoxifylline.

5.
Clin Kidney J ; 13(2): 125-127, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32297880

RESUMO

Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide. Only early diagnosis will allow prevention of both CKD progression and the negative impact of CKD on all-cause and cardiovascular mortality. Klotho is a protein produced by the kidneys that has anti-ageing and phosphaturic properties, preventing excess positive phosphate balance. There is evidence that Klotho downregulation is one of the earliest consequences of kidney injury. Thus the development of reliable assays to monitor Klotho levels may allow an early diagnosis of CKD and monitoring the impact of therapies aimed at preserving Klotho expression or at preventing CKD progression. However, the performance of Klotho assays has been suboptimal so far. In this issue of Clinical Kidney Journal, Neyra et al. explore methods to improve the reliability of Klotho assays.

7.
Lancet Diabetes Endocrinol ; 8(4): 301-312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32135136

RESUMO

BACKGROUND: Microalbuminuria is an early sign of kidney disease in people with diabetes and indicates increased risk of cardiovascular disease. We tested whether a urinary proteomic risk classifier (CKD273) score was associated with development of microalbuminuria and whether progression to microalbuminuria could be prevented with the mineralocorticoid receptor antagonist spironolactone. METHODS: In this multicentre, prospective, observational study with embedded randomised controlled trial (PRIORITY), we recruited people with type 2 diabetes, normal urinary albumin excretion, and preserved renal function from 15 specialist centres in ten European countries. All participants (observational cohort) were tested with the CKD273 classifier and classified as high risk (CKD273 classifier score >0·154) or low risk (≤0·154). Participants who were classified as high risk were entered into a randomised controlled trial and randomly assigned (1:1), by use of an interactive web-response system, to receive spironolactone 25 mg once daily or matched placebo (trial cohort). The primary endpoint was development of confirmed microalbuminuria in all individuals with available data (observational cohort). Secondary endpoints included reduction in incidence of microalbuminuria with spironolactone (trial cohort, intention-to-treat population) and association between CKD273 risk score and measures of impaired renal function based on estimated glomerular filtration rate (eGFR; observational cohort). Adverse events (particularly gynaecomastia and hyperkalaemia) and serious adverse events were recorded for the intention-to-treat population (trial cohort). This study is registered with the EU Clinical Trials Register (EudraCT 20120-004523-4) and ClinicalTrials.gov (NCT02040441) and is completed. FINDINGS: Between March 25, 2014, and Sept 30, 2018, we enrolled and followed-up 1775 participants (observational cohort), 1559 (88%) of 1775 participants had a low-risk urinary proteomic pattern and 216 (12%) had a high-risk pattern, of whom 209 were included in the trial cohort and assigned to spironolactone (n=102) or placebo (n=107). The overall median follow-up time was 2·51 years (IQR 2·0-3·0). Progression to microalbuminuria was seen in 61 (28%) of 216 high-risk participants and 139 (9%) of 1559 low-risk participants (hazard ratio [HR] 2·48, 95% CI 1·80-3·42; p<0·0001, after adjustment for baseline variables of age, sex, HbA1c, systolic blood pressure, retinopathy, urine albumin-to-creatinine ratio [UACR], and eGFR). Development of impaired renal function (eGFR <60 mL/min per 1·73 m2) was seen in 48 (26%) of 184 high-risk participants and 119 (8%) of 1423 low-risk participants (HR 3·50; 95% CI 2·50-4·90, after adjustment for baseline variables). A 30% decrease in eGFR from baseline (post-hoc endpoint) was seen in 42 (19%) of 216 high-risk participants and 62 (4%) of 1559 low-risk participants (HR 5·15, 95% CI 3·41-7·76; p<0·0001, after adjustment for basline eGFR and UACR). In the intention-to-treat trial cohort, development of microalbuminuria was seen in 35 (33%) of 107 in the placebo group and 26 (25%) of 102 in the spironolactone group (HR 0·81, 95% CI 0·49-1·34; p=0·41). In the safety analysis (intention-to-treat trial cohort), events of plasma potassium concentrations of more than 5·5 mmol/L were seen in 13 (13%) of 102 participants in the spironolactone group and four (4%) of 107 participants in the placebo group, and gynaecomastia was seen in three (3%) participants in the spironolactone group and none in the placebo group. One patient died in the placebo group due to a cardiac event (considered possibly related to study drug) and one patient died in the spironolactone group due to cancer, deemed unrelated to study drug. INTERPRETATION: In people with type 2 diabetes and normoalbuminuria, a high-risk score from the urinary proteomic classifier CKD273 was associated with an increased risk of progression to microalbuminuria over a median of 2·5 years, independent of clinical characteristics. However, spironolactone did not prevent progression to microalbuminuria in high-risk patients. FUNDING: European Union Seventh Framework Programme.

9.
Sci Rep ; 10(1): 5457, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198479

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Toxins (Basel) ; 12(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121234

RESUMO

Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.

11.
ESC Heart Fail ; 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32100468

RESUMO

AIMS: Long-term treatment effect studies in large female Fabry patient groups are challenging to design because of phenotype heterogeneity and lack of appropriate comparison groups, and have not been reported. We compared long-term cardiomyopathy and kidney function outcomes after agalsidase beta treatment with preceding treatment-naive outcomes. METHODS AND RESULTS: Self-controlled pretreatment and post-treatment comparison (piecewise mixed linear modelling) included Fabry female patients ≥18 years at treatment initiation who received agalsidase beta (0.9-1.1 mg/kg every other week) for ≥2 years, with ≥2 pretreatment and ≥2 post-treatment outcome measurements during 10-year follow-up. Left ventricular posterior wall thickness (LVPWT)/interventricular septal thickness (IVST) and estimated glomerular filtration rate (eGFR, Chronic Kidney Disease Epidemiology Collaboration creatinine equation) analyses included 42 and 86 patients, respectively, aged 50.0 and 46.3 years at treatment initiation, respectively. LVPWT and IVST increased pretreatment (follow-up 3.5 years) but stabilized during 3.6 years of treatment (LVPWT: n = 38, slope difference [95% confidence interval (CI)] = -0.41 [-0.68, -0.15] mm/year, Ppre-post difference  <0.01; IVST: n = 38, slope difference = -0.32 [-0.67, 0.02] mm/year, Ppre-post difference  = 0.07). These findings were not modified by renal involvement or antiproteinuric agent use. Compared with the treatment-naive period (follow-up 3.6 years), eGFR decline remained modest and stabilized within normal ranges during 4.1 years of treatment (slope difference, 95% CI: -0.13 [-1.15, 0.89] mL/min/1.73m2 /year, Ppre-post difference  = 0.80). CONCLUSIONS: Cardiac hypertrophy, progressing during pretreatment follow-up, appeared to stabilize during sustained agalsidase beta treatment. eGFR decline remained within normal ranges. This suggests that treatment may prevent further Fabry-related progression of cardiomyopathy in female patients and maintain normal kidney function.

12.
Redox Biol ; 32: 101464, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32092686

RESUMO

Omeprazole, a proton pump inhibitor used to treat peptic ulcer and gastroesophageal reflux disease, has been associated to chronic kidney disease and acute interstitial nephritis. However, whether omeprazole is toxic to renal cells is unknown. Omeprazole has a lethal effect over some cancer cells, and cell death is a key process in kidney disease. Thus, we evaluated the potential lethal effect of omeprazole over tubular cells. Omeprazole induced dose-dependent cell death in human and murine proximal tubular cell lines and in human primary proximal tubular cell cultures. Increased cell death was observed at the high concentrations used in cancer cell studies and also at lower concentrations similar to those in peptic ulcer patient serum. Cell death induced by omeprazole had features of necrosis such as annexin V/7-AAD staining, LDH release, vacuolization and irregular chromatin condensation. Weak activation of caspase-3 was observed but inhibitors of caspases (zVAD), necroptosis (Necrostatin-1) or ferroptosis (Ferrostatin-1) did not prevent omeprazole-induced death. However, omeprazole promoted a strong oxidative stress response affecting mitochondria and lysosomes and the antioxidant N-acetyl-cysteine reduced oxidative stress and cell death. By contrast, iron overload increased cell death. An adaptive increase in the antiapoptotic protein BclxL failed to protect cells. In mice, parenteral omeprazole increased tubular cell death and the expression of NGAL and HO-1, markers of renal injury and oxidative stress, respectively. In conclusion, omeprazole nephrotoxicity may be related to induction of oxidative stress and renal tubular cell death.

13.
Nephrol Dial Transplant ; 35(Supplement_1): i13-i23, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003834

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin-angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin-angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.

14.
Biomolecules ; 10(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102312

RESUMO

: Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.

15.
Int J Mol Sci ; 21(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102247

RESUMO

Tryptophan is an essential dietary amino acid that originates uremic toxins that contribute to end-stage kidney disease (ESKD) patient outcomes. We evaluated serum levels and removal during haemodialysis and haemodiafiltration of tryptophan and tryptophan-derived uremic toxins, indoxyl sulfate (IS) and indole acetic acid (IAA), in ESKD patients in different dialysis treatment settings. This prospective multicentre study in four European dialysis centres enrolled 78 patients with ESKD. Blood and spent dialysate samples obtained during dialysis were analysed with high-performance liquid chromatography to assess uremic solutes, their reduction ratio (RR) and total removed solute (TRS). Mean free serum tryptophan and IS concentrations increased, and concentration of IAA decreased over pre-dialysis levels (67%, 49%, -0.8%, respectively) during the first hour of dialysis. While mean serum total urea, IS and IAA concentrations decreased during dialysis (-72%, -39%, -43%, respectively), serum tryptophan levels increased, resulting in negative RR (-8%) towards the end of the dialysis session (p < 0.001), despite remarkable Trp losses in dialysate. RR and TRS values based on serum (total, free) and dialysate solute concentrations were lower for conventional low-flux dialysis (p < 0.001). High-efficiency haemodiafiltration resulted in 80% higher Trp losses than conventional low-flux dialysis, despite similar neutral Trp RR values. In conclusion, serum Trp concentrations and RR behave differently from uremic solutes IS, IAA and urea and Trp RR did not reflect dialysis Trp losses. Conventional low-flux dialysis may not adequately clear Trp-related uremic toxins while high efficiency haemodiafiltration increased Trp losses.

16.
Angiology ; 71(4): 315-323, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32000517

RESUMO

Several trials have been completed in patients with heart failure (HF) treated with uric acid (UA)-lowering agents with inconsistent results. We aimed to investigate whether lowering UA would have an effect on mortality and cardiovascular (CV) events in patients with HF in a systematic review and meta-analysis. The primary outcome measures were all-cause mortality, CV mortality, CV events, and CV hospitalization in patients with HF. We included 11 studies in our final analysis. Overall, allopurinol treatment was associated with a significant increase in the risk for all-cause mortality (hazard ratio [HR]: 1.24, 95% confidence interval [CI]: 1.04-1.49, P = .02). The trial heterogeneity is high (heterogeneity χ2 = 37.3, I2 = 73%, P < .001). With regard to CV mortality, allopurinol treatment was associated with a 42% increased risk of CV mortality (HR: 1.42, 95% CI: 1.11-1.81, P = .005). There was a trend toward increased CV hospitalization in the same group (HR: 1.21, 95% CI: 0.95-1.53, P = .12). Uric acid-lowering treatments increase all-cause and CV mortality but did not increase CV hospitalization significantly in this study.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Alopurinol/uso terapêutico , Febuxostat/uso terapêutico , Insuficiência Cardíaca/mortalidade , Humanos , Oxipurinol/uso terapêutico , Ácido Úrico
17.
Int Urol Nephrol ; 52(3): 541-547, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32008199

RESUMO

BACKGROUND AND OBJECTIVES: Contrast-induced nephropathy (CIN) is a relatively common complication following primary coronary angiography (CAG) or percutaneous coronary intervention (PCI), especially in at-risk patients. The goal of this study is to evaluate the role of pre-procedural serum osmolarity as a risk factor for CIN in patients undergoing elective CAG for stable coronary artery disease (CAD). MATERIALS AND METHODS: A total of 356 stable CAD patients scheduled to undergo CAG or PCI were included in this two-center study. Serum osmolarity was calculated on admission. CIN was defined according to the KDIGO criteria. RESULTS: There were 45 (12.6%) patients who developed CIN 48-72 h after CAG or PCI. CIN patients had a higher prevalence of diabetes (51.1% in those with CIN vs 24.4% in those without CIN, p < 0.001), higher serum glucose (129 mg/dL in those with CIN vs 108 mg/dL in those without CIN, p < 0.001), blood urea nitrogen (22.4 mg/dL in those with CIN vs 19.0 mg/dL in those without CIN, p = 0.01) and serum osmolarity (294.2 mOsm in those with CIN vs 290.1 mOsm in those without CIN, p < 0.001) levels, had received a higher dose of contrast (250 mL in those with CIN vs 200 mL in those without CIN, p = 0.03) but had lower hemoglobin (12.9 g/dL in those with CIN vs 13.6 g/dL in those without CIN, p = 0.04) level. In multivariate analysis, serum osmolarity [odds ratio (OR) 1.11; 95% confidence interval (CI) 1.04-1.18 for each mOsm/L increase; p = 0.001], diabetes (OR 2.43, 95% CI 1.26-4.71; p = 0.01), C-reactive protein (OR 1.04, 95% CI 1.01-1.08 for each mg/dL increase; p = 0.02) and contrast volume (OR 34.66, 95% CI 1.25-962.22 for each L increase; p = 0.04) remained as independent predictors of CIN. Serum sodium, glucose and blood urea nitrogen contributed to the excess serum osmolarity of CIN patients. CONCLUSION: Serum osmolarity is a cheap and widely available marker that can reliably predict CIN after CAG or PCI. Future research should focus on determining a clinically optimal cutoff for serum osmolarity that would warrant preventive interventions. Furthermore, later research may investigate the role of serum osmolarity not only as a risk factor but also as a pathogenetic mechanism underlying CIN.

18.
Nat Rev Nephrol ; 16(5): 269-288, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32060481

RESUMO

Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor ß1 (TGFß1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.

19.
EMBO Mol Med ; 12(3): e11729, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32072759

RESUMO

Chronic kidney disease (CKD) is one of the fastest growing global causes of death, estimated to rank among the top five by 2040 (Foreman et al, 2018). This illustrates current pitfalls in diagnosis and management of CKD. Advanced CKD requires renal function replacement by dialysis or transplantation. However, earlier CKD stages, even when renal function is still normal, are already associated with an increased risk of premature death (Perez-Gomez et al, 2019). Thus, novel approaches to diagnose and treat CKD are needed. The histopathological hallmark of CKD is kidney fibrosis, which is closely associated with local inflammation and loss of kidney parenchymal cells. Thus, kidney fibrosis is an attractive process to develop tests allowing an earlier diagnosis of CKD and represents a potential therapeutic target to slow CKD progression or promote regression.

20.
Sci Rep ; 10(1): 2056, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029842

RESUMO

The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA