Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Biosens Bioelectron ; 169: 112592, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32942143


Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.

Doenças Transmissíveis/diagnóstico , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos/isolamento & purificação , Doenças das Plantas , Sistemas Automatizados de Assistência Junto ao Leito , Betacoronavirus/isolamento & purificação , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Desenho de Equipamento , Humanos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/sangue , Ácidos Nucleicos/urina , Pandemias , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia
Curr Protoc Plant Biol ; 5(1): e20104, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32074406


Isolation of high-quality DNA from infected plant specimens is an essential step for the molecular detection of plant pathogens. However, DNA isolation from plant cells surrounded by rigid polysaccharide cell walls involves complicated steps and requires benchtop laboratory equipment. As a result, plant DNA extraction is currently confined to well-equipped laboratories and sample preparation has become one of the major hurdles for on-site molecular detection of plant pathogens. To overcome this hurdle, a simple DNA extraction method from plant leaf tissues has been developed. A microneedle (MN) patch made of polyvinyl alcohol (PVA) can isolate plant or pathogenic DNA from different plant species within a minute. During DNA extraction, the polymeric MN patch penetrates into plant leaf tissues and breaks rigid plant cell walls to isolate intracellular DNA. The extracted DNA is polymerase chain reaction (PCR) amplifiable without additional purification. This minimally invasive method has successfully extracted Phytophthora infestans DNA from infected tomato leaves. Moreover, the MN patch could be used to isolate DNA from other plant pathogens directly in the field. Thus, it has great potential to become a rapid, on-site sample preparation technique for plant pathogen detection. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Microneedle patch-based DNA extraction Support Protocol 1: Microneedle patch fabrication Support Protocol 2: Real-time PCR amplification of microneedle patch extracted DNA.

Lycopersicon esculentum , Phytophthora infestans/genética , DNA de Plantas , Folhas de Planta , Reação em Cadeia da Polimerase em Tempo Real