Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Intervalo de ano de publicação
Inorg Chem ; 57(1): 106-119, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227093


The new tritopic triaminoguanidine-based ligand 1,2,3-tris[(pyridine-2-ylmethylidene)amino]guanidine (H2pytag) was synthesized. The reaction of a mixture of cobalt(II) chloride and cobalt(II) perchlorate with the ligand H2pytag in pyridine solution leads to the formation of the trinuclear cobalt(II) complex [Co3(pytag)(py)6Cl3]ClO4. Three octahedrally coordinated high-spin cobalt(II) ions are linked through the bridging triaminoguanidine backbone of the ligand leading to an almost equilateral triangular arrangement. The magnetic properties of the complex were investigated by magnetic measurements, variable-temperature, variable-field magnetic circular dichroism (MCD) spectroscopy, and density functional theory as well as ab initio calculations. A rather strong antiferromagnetic exchange interaction between the cobalt(II) centers of ca. -12 cm-1 is determined together with a strong local anisotropy. The single-ion anisotropy of all three cobalt(II) centers is found to be easy-plane, which coincides with the tritopic ligand plane. MCD measurements and theoretical investigations demonstrate the presence of rhombic distortion of the local Co surrounding.

Inorg Chem ; 56(5): 2662-2676, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28260389


New tetranuclear and octanuclear mixed-valent cobalt(II/III) pivalate clusters, namely, [NaCo4(O2CCMe3)6(HO2CCMe3)2(teaH)2(N3)]·2H2O (in two polymorphic modifications, 1 and 1a) and [Co8(O2CCMe3)10(teaH)4(N3)](Me3CCO2)·MeCN·H2O (2) have been synthesized by ultrasonic treatment of a dinuclear cobalt(II) pivalate precursor with sodium azide and triethanolamine (teaH3) ligand in acetonitrile. The use of Dy(NO3)3·6H2O in a similar reaction led to the precipitation of a tetranuclear [NaCo4(O2CCMe3)4(teaH)2(N3)(NO3)2(H2O)2]·H2O (3) cluster and a heterometallic hexanuclear [Co3Dy3(OH)4(O2CCMe3)6(teaH)3(H2O)3](NO3)2·H2O (4) cluster. Single-crystal X-ray analysis showed that 1 (1a) and 3 consist of a tetranuclear pivalate/teaH3 mixed-ligand cluster [CoII2CoIII2(O2CCMe3)4(teaH)2(N3)]+ decorated with sodium pivalates [Na(O2CCMe3)2(HO2CCMe3)2]- (1 or 1a) or sodium nitrates [Na(NO3)2]- (3) to form a square-pyramidal assembly. In 2, the cationic [Co8(O2CCMe3)10(teaH)4(N3)]+ cluster comprises a mixed-valent {CoII4CoIII4} core encapsulated by an azide, 4 teaH2- alcoholamine ligands, and 10 bridging pivalates. Remarkably, in this core, the µ4-N3- ligand joins all four CoII atoms. The heterometallic hexanuclear compound 4 consists of a cationic [CoIII3DyIII3(OH)4(O2CCMe3)6(teaH)3(H2O)3]2+ cluster, two NO3- anions, and a crystallization water molecule. The arrangement of metal atoms in 4 can be approximated as the assembly of a smaller equilateral triangle defined by three Dy sites with a Dy···Dy distance of 3.9 Å and a larger triangle formed by Co sites [Co···Co, 6.1-6.2 Å]. The interpretation of the magnetic properties of clusters 2-4 was performed in the framework of theoretical models, taking into account the structural peculiarities of clusters and their energy spectra. The behavior of clusters 2 and 3 containing CoII ions with orbitally nondegenerate ground states is determined by the zero-field splitting of these states and Heisenberg exchange interaction between the ions. To get a good understanding of the observed magnetic behavior of cluster 4, we take into consideration the crystal fields acting on the DyIII ions, the ferromagnetic coupling of neighboring DyIII ions, and the intercluster antiferromagnetic exchange. For all examined clusters, the developed models describe well the observed temperature dependence of the magnetic susceptibility and the field dependence of magnetization. The computational results apparently show that in cluster 4 two DyIII ions with similar nearest surroundings demonstrate single-molecule-magnet (SMM) behavior, while the strong rhombicity of the ligand surrounding hinders the SMM behavior of the third DyIII ion.

Nat Commun ; 7: 12195, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435800


New exotic phenomena have recently been discovered in oxides of paramagnetic Ir(4+) ions, widely known as 'iridates'. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6](8-) species (the simplest molecular analogue of the elementary {IrO6}(8-) fragment present in all iridates). Here, we introduce an alternative approach to circumvent this problem by substituting the oxide ions in [IrO6](8-) by isoelectronic fluorides to form the fluorido-iridate: [IrF6](2-). This molecular species has the same electronic ground state as the {IrO6}(8-) fragment, and thus emerges as an ideal model for iridates. These results may open perspectives for using fluorido-iridates as building-blocks for electronic and magnetic quantum materials synthesized by soft chemistry routes.

Phys Chem Chem Phys ; 17(44): 30037-44, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26510129


This paper reports the experimental and theoretical study of a tetranuclear (CuClOCH2CH2N(C4H9)2)4 complex. Analysis of the magnetic circular dichroism spectrum was performed based on the Hamiltonian that includes the crystal field of the nearest ligands and the spin-orbit interaction. The crystal field parameters were evaluated in the framework of the exchange charge model that accounts for the exchange and covalence effects. The values of the crystal field parameters obtained during the analysis of the magnetic circular dichroism spectrum were used for the calculation of the principal values and the directions of the principal axes of the local g-tensors and for the simulation of both temperature dependence of the magnetic susceptibility and field dependence of the magnetization. The value of the exchange parameter (Jex = 30 cm(-1)) was obtained. It was demonstrated that the description of the low temperature magnetic properties requires taking into account the intercluster interaction.

J Chem Phys ; 143(8): 084502, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328851


In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.

Chemistry ; 16(45): 13458-64, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20938935


We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase χ''(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1 is found to be Δ(eff)/k(B)=19 K (τ(0)=5.0×10(-7) s; k(B)=Boltzmann constant), whereas only the onset (1.5 kHz, 1.8 K) of χ''(T) is observed for 2, thus indicating a higher blocking temperature for 1. The strong spin-orbit coupling present in Os(III) isolates the E'(1g(1/2))(O(h)*) Kramers doublet that exhibits orbital contributions to the single-ion anisotropy. Magnetic susceptibility and inelastic neutron-scattering measurements reveal that substitution of [Fe(CN)(6)](3-) by the [Os(CN)(6)](3-) anion results in larger ferromagnetic, anisotropic exchange interactions going from quasi-Ising exchange interactions in 2 to pure Ising exchange for 1 with J(parallel)(MnOs)=-30.6 cm(-1). The combination of diffuse magnetic orbitals and the Ising-type exchange interaction effectively contributes to a higher blocking temperature. This result is in accordance with theoretical predictions and paves the way for the design of a new generation of SMMs with enhanced SMM properties.