Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Thromb Haemost ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587817

RESUMO

BACKGROUND: Megakaryocytes (MKs) originate from cells immuno-phenotypically indistinguishable from hematopoietic stem cells (HSCs), bypassing intermediate progenitors. They mature within the adult bone marrow and release platelets into the circulation. Until now there have been no transcriptional studies of primary human bone marrow MKs. OBJECTIVES: To characterize MKs and HSCs from human bone marrow using single cell RNA sequencing, to investigate MK lineage commitment, maturation steps and thrombopoiesis. RESULTS: We show that MKs at different levels of polyploidisation exhibit distinct transcriptional states. While high levels of platelet specific gene expression occurs in the lower ploidy classes, as polyploidization increases, gene expression is redirected towards translation and posttranslational processing transcriptional programs, in preparation for thrombopoiesis. Our findings are in keeping with studies of MK ultrastructure and supersede evidence generated using in vitro cultured MKs. Additionally, by analyzing transcriptional signatures of single HSC, we identify two MK biased HSC subpopulations exhibiting unique differentiation kinetics. We show that human bone marrow MKs originate from these HSC subpopulations, supporting the notion that they display priming for MK differentiation. Finally, to investigate transcriptional changes in MK associated with stress thrombopoiesis we analysed bone marrow MKs from individuals with recent myocardial infarction and found a specific gene expression signature. Our data supports the modulation of MK differentiation in this thrombotic state. CONCLUSIONS: Here, we use single cell sequencing for the first time to characterise the human bone marrow MK transcriptome at different levels of polyploidization and investigate their differentiation from the HSC.

2.
Blood Adv ; 5(2): 391-398, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496735

RESUMO

High levels of tissue factor pathway inhibitor (TFPI), caused by a longer TFPIα half-life after binding to a factor V splice variant and variants in the F5 gene, were recently identified in 2 families with an as-yet-unexplained bleeding tendency. This study aimed to investigate free TFPIα in a well-characterized cohort of 620 patients with mild to moderate bleeding tendencies and its association to genetic alterations in the F5 gene. TFPIα levels were higher in patients with bleeding compared with healthy controls (median [interquartile range], 8.2 [5.5-11.7] vs 7.8 [4.3-11.1]; P = .026). A higher proportion of patients had free TFPIα levels more than or equal to the 95th percentile compared with healthy controls (odds ratio [OR] [95% confidence interval (CI)], 2.82 [0.98-8.13]). This was pronounced in the subgroup of patients in whom no bleeding disorder could be identified (bleeding of unknown cause [BUC; n = 420]; OR [95% CI], 3.03 [1.02-8.98]) and in platelet function defects (PFDs) (n = 121; OR [95% CI], 3.47 [1.09-11.08]). An increase in free TFPIα was associated with a mild delay in thrombin generation (prolonged lag time and time to peak), but not with alterations in routinely used global clotting tests. We could neither identify new or known genetic variations in the F5 gene that are associated with free TFPIα levels, nor an influence of the single-nucleotide variant rs10800453 on free TFPIα levels in our patient cohort. An imbalance of natural coagulation inhibitors such as TFPIα could be an underlying cause or contributor for unexplained bleeding, which is most probably multifactorial in a majority of patients.

3.
Blood Adv ; 5(2): 549-564, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496751

RESUMO

Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.

4.
Nat Commun ; 11(1): 6385, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318491

RESUMO

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Imunidade Humoral/efeitos dos fármacos , /efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Adulto , Alanina/uso terapêutico , Antivirais/uso terapêutico , Febre/prevenção & controle , Humanos , Imunidade Humoral/imunologia , Contagem de Linfócitos , Masculino , /fisiologia , Resultado do Tratamento
5.
Transfus Med ; 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33341984

RESUMO

OBJECTIVE: To compare four haemoglobin measurement methods in whole blood donors. BACKGROUND: To safeguard donors, blood services measure haemoglobin concentration in advance of each donation. NHS Blood and Transplant's (NHSBT) customary method have been capillary gravimetry (copper sulphate), followed by venous spectrophotometry (HemoCue) for donors failing gravimetry. However, NHSBT's customary method results in 10% of donors being inappropriately bled (ie, with haemoglobin values below the regulatory threshold). METHODS: We compared the following four methods in 21 840 blood donors (aged ≥18 years) recruited from 10 NHSBT centres in England, with the Sysmex XN-2000 haematology analyser, the reference standard: (1) NHSBT's customary method; (2) "post donation" approach, that is, estimating current haemoglobin concentration from that measured by a haematology analyser at a donor's most recent prior donation; (3) "portable haemoglobinometry" (using capillary HemoCue); (4) non-invasive spectrometry (using MBR Haemospect or Orsense NMB200). We assessed sensitivity; specificity; proportion who would have been inappropriately bled, or rejected from donation ("deferred") incorrectly; and test preference. RESULTS: Compared with the reference standard, the methods ranged in test sensitivity from 17.0% (MBR Haemospect) to 79.0% (portable haemoglobinometry) in men, and from 19.0% (MBR Haemospect) to 82.8% (portable haemoglobinometry) in women. For specificity, the methods ranged from 87.2% (MBR Haemospect) to 99.9% (NHSBT's customary method) in men, and from 74.1% (Orsense NMB200) to 99.8% (NHSBT's customary method) in women. The proportion of donors who would have been inappropriately bled ranged from 2.2% in men for portable haemoglobinometry to 18.9% in women for MBR Haemospect. The proportion of donors who would have been deferred incorrectly with haemoglobin concentration above the minimum threshold ranged from 0.1% in men for NHSBT's customary method to 20.3% in women for OrSense. Most donors preferred non-invasive spectrometry. CONCLUSION: In the largest study reporting head-to-head comparisons of four methods to measure haemoglobin prior to blood donation, our results support replacement of NHSBT's customary method with portable haemoglobinometry.

6.
Sci Data ; 7(1): 376, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168820

RESUMO

Both poly(A) enrichment and ribosomal RNA depletion are commonly used for RNA sequencing. Either has its advantages and disadvantages that may lead to biases in the downstream analyses. To better access these effects, we carried out both ribosomal RNA-depleted and poly(A)-selected RNA-seq for CD4+ T naive cells isolated from 40 healthy individuals from the Blueprint Project. For these 40 individuals, the genomic and epigenetic data were also available. This dataset offers a unique opportunity to understand how library construction influences differential gene expression, alternative splicing and molecular QTL (quantitative loci) analyses for human primary cells.

7.
Commun Biol ; 3(1): 703, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239738

RESUMO

Restless legs syndrome (RLS) is a common neurological sensorimotor disorder often described as an unpleasant sensation associated with an urge to move the legs. Here we report findings from a meta-analysis of genome-wide association studies of RLS including 480,982 Caucasians (cases = 10,257) and a follow up sample of 24,977 (cases = 6,651). We confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three novel RLS associations; rs112716420-G (OR = 1.25, P = 1.5 × 10-18), rs10068599-T (OR = 1.09, P = 6.9 × 10-10) and rs10769894-A (OR = 0.90, P = 9.4 × 10-14). At four of the 22 RLS loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk score for RLS we extended prior epidemiological findings implicating obesity, smoking and high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of seeking better treatments, more genetics studies yielding deeper insights into the disease biology are needed.

8.
Blood Adv ; 4(15): 3495-3506, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750130

RESUMO

Each year, blood transfusions save millions of lives. However, under current blood-matching practices, sensitization to non-self-antigens is an unavoidable adverse side effect of transfusion. We describe a universal donor typing platform that could be adopted by blood services worldwide to facilitate a universal extended blood-matching policy and reduce sensitization rates. This DNA-based test is capable of simultaneously typing most clinically relevant red blood cell (RBC), human platelet (HPA), and human leukocyte (HLA) antigens. Validation was performed, using samples from 7927 European, 27 South Asian, 21 East Asian, and 9 African blood donors enrolled in 2 national biobanks. We illustrated the usefulness of the platform by analyzing antibody data from patients sensitized with multiple RBC alloantibodies. Genotyping results demonstrated concordance of 99.91%, 99.97%, and 99.03% with RBC, HPA, and HLA clinically validated typing results in 89 371, 3016, and 9289 comparisons, respectively. Genotyping increased the total number of antigen typing results available from 110 980 to >1 200 000. Dense donor typing allowed identification of 2 to 6 times more compatible donors to serve 3146 patients with multiple RBC alloantibodies, providing at least 1 match for 176 individuals for whom previously no blood could be found among the same donors. This genotyping technology is already being used to type thousands of donors taking part in national genotyping studies. Extraction of dense antigen-typing data from these cohorts provides blood supply organizations with the opportunity to implement a policy of genomics-based precision matching of blood.

9.
Elife ; 92020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773033

RESUMO

Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution.

10.
J Clin Invest ; 130(10): 5302-5312, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663190

RESUMO

Tissue factor (TF) is the primary initiator of blood coagulation in vivo and the only blood coagulation factor for which a human genetic defect has not been described. As there are no routine clinical assays that capture the contribution of endogenous TF to coagulation initiation, the extent to which reduced TF activity contributes to unexplained bleeding is unknown. Using whole genome sequencing, we identified a heterozygous frameshift variant (p.Ser117HisfsTer10) in F3, the gene encoding TF, causing premature termination of TF (TFshort) in a woman with unexplained bleeding. Routine hematological laboratory evaluation of the proposita was normal. CRISPR-edited human induced pluripotent stem cells recapitulating the variant were differentiated into vascular smooth muscle and endothelial cells that demonstrated haploinsufficiency of TF. The variant F3 transcript is eliminated by nonsense-mediated decay. Neither overexpression nor addition of exogenous recombinant TFshort inhibited factor Xa or thrombin generation, excluding a dominant-negative mechanism. F3+/- mice provide an animal model of TF haploinsufficiency and exhibited prolonged bleeding times, impaired thrombus formation, and reduced survival following major injury. Heterozygous TF deficiency is present in at least 1 in 25,000 individuals and could limit coagulation initiation in undiagnosed individuals with abnormal bleeding but a normal routine laboratory evaluation.

11.
Haematologica ; 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703790

RESUMO

Transcriptional profiling of hematopoietic cell subpopulations has helped characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases for the past three decades. Previously, only the genes targeted by expression microarrays could be profiled genome wide. High-throughput RNA sequencing (RNA-seq), however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes. We analysed the BLUEPRINT consortium RNA- seq data for mature hematopoietic cell types. The data comprised 90 total RNA-seq samples, each composed of one of 27 cell types, and 32 small RNA-seq samples, each composed of one of 11 cell types. We estimated gene and isoform expression levels for each cell type using existing annotations from Ensembl. We then used guided transcriptome assembly to discover unannotated transcripts. We identified hundreds of novel non-coding RNA genes and showed that the majority have cell type dependent expression. We also characterized the expression of circular RNAs and found that these are also cell type specific. These analyses refine the active transcriptional landscape of mature hematopoietic cells, highlight abundant genes and transcriptional isoforms for each blood cell type, and provide a valuable resource for researchers of hematological development and diseases. Finally, we made the data accessible via a web-based interface: https://blueprint.haem.cam.ac.uk/bloodatlas/.

12.
Blood ; 136(17): 1907-1918, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573726

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Care delivery for HHT patients is impeded by the need for laborious, repeated phenotyping and gaps in knowledge regarding the relationships between causal DNA variants in ENG, ACVRL1, SMAD4 and GDF2, and clinical manifestations. To address this, we analyzed DNA samples from 183 previously uncharacterized, unrelated HHT and suspected HHT cases using the ThromboGenomics high-throughput sequencing platform. We identified 127 rare variants across 168 heterozygous genotypes. Applying modified American College of Medical Genetics and Genomics Guidelines, 106 variants were classified as pathogenic/likely pathogenic and 21 as nonpathogenic (variant of uncertain significance/benign). Unlike the protein products of ACVRL1 and SMAD4, the extracellular ENG amino acids are not strongly conserved. Our inferences of the functional consequences of causal variants in ENG were therefore informed by the crystal structure of endoglin. We then compared the accuracy of predictions of the causal gene blinded to the genetic data using 2 approaches: subjective clinical predictions and statistical predictions based on 8 Human Phenotype Ontology terms. Both approaches had some predictive power, but they were insufficiently accurate to be used clinically, without genetic testing. The distributions of red cell indices differed by causal gene but not sufficiently for clinical use in isolation from genetic data. We conclude that parallel sequencing of the 4 known HHT genes, multidisciplinary team review of variant calls in the context of detailed clinical information, and statistical and structural modeling improve the prognostication and treatment of HHT.

13.
Transfusion ; 60(6): 1294-1307, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32473076

RESUMO

BACKGROUND: The MNS blood group system is defined by three homologous genes: GYPA, GYPB, and GYPE. GYPB encodes for glycophorin B (GPB) carrying S/s and the "universal" antigen U. RBCs of approximately 1% of individuals of African ancestry are U- due to absence of GPB. The U- phenotype has long been attributed to a deletion encompassing GYPB exons 2 to 5 and GYPE exon 1 (GYPB*01N). STUDY DESIGN AND METHODS: Samples from two U-individuals underwent Illumina short read whole genome sequencing (WGS) and Nanopore long read WGS. In addition, two existing WGS datasets, MedSeq (n = 110) and 1000 Genomes (1000G, n = 2535), were analyzed for GYPB deletions. Deletions were confirmed by Sanger sequencing. Twenty known U- donor samples were tested by a PCR assay to determine the specific deletion alleles present in African Americans. RESULTS: Two large GYPB deletions in U- samples of African ancestry were identified: a 110 kb deletion extending left of GYPB (DEL_B_LEFT) and a 103 kb deletion extending right (DEL_B_RIGHT). DEL_B_LEFT and DEL_B_RIGHT were the most common GYPB deletions in the 1000 Genomes Project 669 African genomes (allele frequencies 0.04 and 0.02). Seven additional deletions involving GYPB were seen in African, Admixed American, and South Asian samples. No samples analyzed had GYPB*01N. CONCLUSIONS: The U- phenotype in those of African ancestry is primarily associated with two different complete deletions of GYPB (with intact GYPE). Seven additional less common GYPB deletion backgrounds were found. GYPB*01N, long assumed to be the allele commonly encoding U- phenotypes, appears to be rare.

14.
Haematologica ; 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299908

RESUMO

We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans.

15.
PLoS Genet ; 16(3): e1008605, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150548

RESUMO

Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we studied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142 (discovery plus follow-up) healthy participants. We leveraged the information from multiple metabolite measurements on the same participants to improve discovery in rare variant association analyses for gene-based and gene-set tests by incorporating correlated metabolites as covariates in the validation stage. Gene-based analysis corrected for the effective number of tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK (p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydrogenase (PDH) complex was associated for the first time, in gene-set analyses also corrected for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol (pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measurements obtained in the same participants, we identified novel loci and pathways involved in the regulation of these important metabolic biomarkers. As large-scale biobanks continue to amass sequencing and phenotypic information, analytical approaches such as ours will be useful to fully exploit the copious amounts of biological data generated in these efforts.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Variação Genética/genética , Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Lipoproteínas/sangue , Masculino , Fenótipo , Triglicerídeos/sangue
16.
Hum Mutat ; 41(1): 277-290, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562665

RESUMO

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.

17.
Am J Respir Crit Care Med ; 201(5): 575-585, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661308

RESUMO

Rationale: Recently, rare heterozygous mutations in GDF2 were identified in patients with pulmonary arterial hypertension (PAH). GDF2 encodes the circulating BMP (bone morphogenetic protein) type 9, which is a ligand for the BMP2 receptor.Objectives: Here we determined the functional impact of GDF2 mutations and characterized plasma BMP9 and BMP10 levels in patients with idiopathic PAH.Methods: Missense BMP9 mutant proteins were expressed in vitro and the impact on BMP9 protein processing and secretion, endothelial signaling, and functional activity was assessed. Plasma BMP9 and BMP10 levels and activity were assayed in patients with PAH with GDF2 variants and in control subjects. Levels were also measured in a larger cohort of control subjects (n = 120) and patients with idiopathic PAH (n = 260).Measurements and Main Results: We identified a novel rare variation at the GDF2 and BMP10 loci, including copy number variation. In vitro, BMP9 missense proteins demonstrated impaired cellular processing and secretion. Patients with PAH who carried these mutations exhibited reduced plasma levels of BMP9 and reduced BMP activity. Unexpectedly, plasma BMP10 levels were also markedly reduced in these individuals. Although overall BMP9 and BMP10 levels did not differ between patients with PAH and control subjects, BMP10 levels were lower in PAH females. A subset of patients with PAH had markedly reduced plasma levels of BMP9 and BMP10 in the absence of GDF2 mutations.Conclusions: Our findings demonstrate that GDF2 mutations result in BMP9 loss of function and are likely causal. These mutations lead to reduced circulating levels of both BMP9 and BMP10. These findings support therapeutic strategies to enhance BMP9 or BMP10 signaling in PAH.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Fator 2 de Diferenciação de Crescimento/genética , Hipertensão Arterial Pulmonar/genética , Adulto , Proteínas Morfogenéticas Ósseas/metabolismo , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Feminino , Fator 2 de Diferenciação de Crescimento/metabolismo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Transporte Proteico , Hipertensão Arterial Pulmonar/metabolismo , Fatores Sexuais
18.
Brain ; 143(1): 210-221, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755939

RESUMO

Thrombosis and platelet activation play a central role in stroke pathogenesis, and antiplatelet and anticoagulant therapies are central to stroke prevention. However, whether haematological traits contribute equally to all ischaemic stroke subtypes is uncertain. Furthermore, identification of associations with new traits may offer novel treatment opportunities. The aim of this research was to ascertain causal relationships between a wide range of haematological traits and ischaemic stroke and its subtypes. We obtained summary statistics from 27 published genome-wide association studies of haematological traits involving over 375 000 individuals, and genetic associations with stroke from the MEGASTROKE Consortium (n = 67 000 stroke cases). Using two-sample Mendelian randomization we analysed the association of genetically elevated levels of 36 blood cell traits (platelets, mature/immature red cells, and myeloid/lymphoid/compound white cells) and 49 haemostasis traits (including clotting cascade factors and markers of platelet function) with risk of developing ischaemic (AIS), cardioembolic (CES), large artery (LAS), and small vessel stroke (SVS). Several factors on the intrinsic clotting pathway were significantly associated (P < 3.85 × 10-4) with CES and LAS, but not with SVS (e.g. reduced factor VIII activity with AIS/CES/LAS; raised factor VIII antigen with AIS/CES; and increased factor XI activity with AIS/CES). On the common pathway, increased gamma (γ') fibrinogen was significantly associated with AIS/CES. Furthermore, elevated plateletcrit was significantly associated with AIS/CES, eosinophil percentage of white cells with LAS, and thrombin-activatable fibrinolysis inhibitor activation peptide antigen with AIS. We also conducted a follow-up analysis in UK Biobank, which showed that amongst individuals with atrial fibrillation, those with genetically lower levels of factor XI are at reduced risk of AIS compared to those with normal levels of factor XI. These results implicate components of the intrinsic and common pathways of the clotting cascade, as well as several other haematological traits, in the pathogenesis of CES and possibly LAS, but not SVS. The lack of associations with SVS suggests thrombosis may be less important for this stroke subtype. Plateletcrit and factor XI are potentially tractable new targets for secondary prevention of ischaemic stroke, while factor VIII and γ' fibrinogen require further population-based studies to ascertain their possible aetiological roles.


Assuntos
Coagulação Sanguínea/genética , Fibrinólise/genética , Embolia Intracraniana/sangue , Trombose Intracraniana/sangue , Ativação Plaquetária/genética , Acidente Vascular Cerebral/sangue , Contagem de Células Sanguíneas , Isquemia Encefálica/sangue , Isquemia Encefálica/epidemiologia , Causalidade , Fator VIII/metabolismo , Fator XI/metabolismo , Fibrinogênio/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Embolia Intracraniana/epidemiologia , Trombose Intracraniana/epidemiologia , Análise da Randomização Mendeliana , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia
19.
Neurology ; 93(22): e2007-e2020, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31719132

RESUMO

OBJECTIVES: To determine the frequency of rare and pertinent disease-causing variants in small vessel disease (SVD)-associated genes (such as NOTCH3, HTRA1, COL4A1, COL4A2, FOXC1, TREX1, and GLA) in cerebral SVD, we performed targeted gene sequencing in 950 patients with younger-onset apparently sporadic SVD stroke using a targeted sequencing panel. METHODS: We designed a high-throughput sequencing panel to identify variants in 15 genes (7 known SVD genes, 8 SVD-related disorder genes). The panel was used to screen a population of 950 patients with younger-onset (≤70 years) MRI-confirmed SVD stroke, recruited from stroke centers across the United Kingdom. Variants were filtered according to their frequency in control databases, predicted effect, presence in curated variant lists, and combined annotation dependent depletion scores. Whole genome sequencing and genotyping were performed on a subset of patients to provide a direct comparison of techniques. The frequency of known disease-causing and pertinent variants of uncertain significance was calculated. RESULTS: We identified previously reported variants in 14 patients (8 cysteine-changing NOTCH3 variants in 11 patients, 2 HTRA1 variants in 2 patients, and 1 missense COL4A1 variant in 1 patient). In addition, we identified 29 variants of uncertain significance in 32 patients. CONCLUSION: Rare monogenic variants account for about 1.5% of younger onset lacunar stroke. Most are cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy variants, but the second most common gene affected is HTRA1. A high-throughput sequencing technology platform is an efficient, reliable method to screen for such mutations.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Acidente Vascular Cerebral Lacunar/genética , Idade de Início , Idoso , CADASIL/genética , Angiopatia Amiloide Cerebral Familiar/genética , Doenças do Tecido Conjuntivo/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Enxaqueca com Aura/genética , Mutação
20.
Lancet Haematol ; 6(10): e510-e520, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31383583

RESUMO

BACKGROUND: The INTERVAL trial showed that, over a 2-year period, inter-donation intervals for whole blood donation can be safely reduced to meet blood shortages. We extended the INTERVAL trial for a further 2 years to evaluate the longer-term risks and benefits of varying inter-donation intervals, and to compare routine versus more intensive reminders to help donors keep appointments. METHODS: The INTERVAL trial was a parallel group, pragmatic, randomised trial that recruited blood donors aged 18 years or older from 25 static donor centres of NHS Blood and Transplant across England, UK. Here we report on the prespecified analyses after 4 years of follow-up. Participants were whole blood donors who agreed to continue trial participation on their originally allocated inter-donation intervals (men: 12, 10, and 8 weeks; women: 16, 14, and 12 weeks). They were further block-randomised (1:1) to routine versus more intensive reminders using computer-generated random sequences. The prespecified primary outcome was units of blood collected per year analysed in the intention-to-treat population. Secondary outcomes related to safety were quality of life, self-reported symptoms potentially related to donation, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin and other factors. This trial is registered with ISRCTN, number ISRCTN24760606, and has completed. FINDINGS: Between Oct 19, 2014, and May 3, 2016, 20 757 of the 38 035 invited blood donors (10 843 [58%] men, 9914 [51%] women) participated in the extension study. 10 378 (50%) were randomly assigned to routine reminders and 10 379 (50%) were randomly assigned to more intensive reminders. Median follow-up was 1·1 years (IQR 0·7-1·3). Compared with routine reminders, more intensive reminders increased blood collection by a mean of 0·11 units per year (95% CI 0·04-0·17; p=0·0003) in men and 0·06 units per year (0·01-0·11; p=0·0094) in women. During the extension study, each week shorter inter-donation interval increased blood collection by a mean of 0·23 units per year (0·21-0·25) in men and 0·14 units per year (0·12-0·15) in women (both p<0·0001). More frequent donation resulted in more deferrals for low haemoglobin (odds ratio per week shorter inter-donation interval 1·19 [95% CI 1·15-1·22] in men and 1·10 [1·06-1·14] in women), and lower mean haemoglobin (difference per week shorter inter-donation interval -0·84 g/L [95% CI -0·99 to -0·70] in men and -0·45 g/L [-0·59 to -0·31] in women) and ferritin concentrations (percentage difference per week shorter inter-donation interval -6·5% [95% CI -7·6 to -5·5] in men and -5·3% [-6·5 to -4·2] in women; all p<0·0001). No differences were observed in quality of life, serious adverse events, or self-reported symptoms (p>0.0001 for tests of linear trend by inter-donation intervals) other than a higher reported frequency of doctor-diagnosed low iron concentrations and prescription of iron supplements in men (p<0·0001). INTERPRETATION: During a period of up to 4 years, shorter inter-donation intervals and more intensive reminders resulted in more blood being collected without a detectable effect on donors' mental and physical wellbeing. However, donors had decreased haemoglobin concentrations and more self-reported symptoms compared with the initial 2 years of the trial. Our findings suggest that blood collection services could safely use shorter donation intervals and more intensive reminders to meet shortages, for donors who maintain adequate haemoglobin concentrations and iron stores. FUNDING: NHS Blood and Transplant, UK National Institute for Health Research, UK Medical Research Council, and British Heart Foundation.


Assuntos
Doadores de Sangue/estatística & dados numéricos , Adolescente , Adulto , Anemia Ferropriva/prevenção & controle , Doadores de Sangue/provisão & distribução , Eficiência , Feminino , Ferritinas/sangue , Hemoglobinas/análise , Humanos , Ferro/sangue , Masculino , Segurança do Paciente , Qualidade de Vida , Medição de Risco , Fatores Sexuais , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA