Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Anal Chem ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605631

RESUMO

Nanozymes are of particular interest due to their enzyme-mimicking activity and high stability that are favorable in biomedical sensing and immunoassays. In this work, we report a highly specific N-doped nanozyme through pyrolysis of framework-confined bovine serum albumin (BSA). This strategy allows one to translate the low-cost and featureless BSA into a highly active enzyme mimic. The obtained carbon nanozyme (denoted as HBF-1-C800) displays 3- to 7-fold enhancement on peroxidase (POD) activity compared with the conventional carbon nanozymes and also shows ca. 5-fold activity enhancement compared to the reported N-doping graphene. Such excellent POD activity originates from high N-doping efficiency, protein-induced defective sites, and the intrinsic porous structure of HBF-1-C800, which provides abundantly accessible active sites and accelerates substrate diffusion simultaneously. Importantly, the HBF-1-C800 nanozyme has highly specific POD activity and also enables resistance to several harsh conditions that should denature natural enzymes. These features allow it with high accuracy, stability, and sensitivity for biosensing applications. Moreover, HBF-1-C800 has been designed as a promising platform for colorimetric biosensing of several biomarkers including H2O2, glutathione, and glucose, with wide linear ranges and low limits of detection that are satisfied with the disease diagnosis.

2.
Anal Chim Acta ; 1183: 338967, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34627509

RESUMO

The monitoring of mercury and fluoride ions (Hg2+ and F-) has aroused wide concerns owing to the high toxicity of Hg2+ and the duplicitous nature of F- to human health. As far as we known, more than 100 million people in poverty-stricken areas are still at high risk of being over-exposed to Hg2+ and F- via drinking water. Simple and cost-effective luminescent methods are highly promising for on-site water monitoring in rural areas. However, the development of multipurpose luminescent probes that are accurate and sensitive remains challenging. Herein, a new strategy for rationally designing a multipurpose ratiometric probe is present. The obtained probe is consisted of two emission units with energy transfer between them, which exhibit high coordination affinities to the two coexisted toxic targets (Hg2+ and F-), respectively. Thus, two distinct routes for efficiently modulating the energy transfer in the probe are present to trigger the responses to the two targets in sequence. By detecting the shift of the emission color with a smartphone, an on-site water monitoring method is successfully established with the detection limits as low as 2.7 nM for Hg2+ and 1.9 µM for F-. The present study can expend the toolbox for water monitoring in rural regions.


Assuntos
Corantes Fluorescentes , Mercúrio , Transferência de Energia , Fluoretos , Humanos , Água
3.
Environ Sci Technol ; 55(18): 12449-12458, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34494434

RESUMO

In this study, a biocompatible solid-phase microextraction (SPME) fiber with high-coverage capture capacity based on a nitrogen-rich porous polyaminal was developed. The fiber was used to track the bioaccumulation and elimination of carbamates (isoprocarb, carbofuran, and carbaryl) and their metabolites (o-cumenol, carbofuran phenol, and 1-naphthalenol) in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A case-and-control model was applied in the hydroponically cultured plants, with the exposed plant groups contaminated under three carbamates at 5 µg mL-1. Both bio-enrichment and elimination of carbamates and their metabolites in living plants appeared to be very fast with half-lives at ∼0.39-0.79 and ∼0.56-0.69 days, respectively. Statistical differences in the endogenous plant metabolome occurred on day 3 of carbamate exposure. In the exposed group, the plant metabolic alterations were not reversed after 5 days of contaminant-free growth, although most contaminates had been eliminated. Compared with prior nutriological and toxicological studies, >50 compounds were first identified as endogenous metabolites in cabbage plants. The contents of the glucosinolate-related metabolites demonstrated significant time-dependent dysregulations that the fold changes of these key metabolites decreased from 0.78-1.07 to 0.28-0.82 during carbamate exposure. To summarize, in vivo SPME provided new and important information regarding exogenous carbamate contamination and related metabolic dysregulation in plants.


Assuntos
Brassica , Carbamatos , Metabolômica , Microextração em Fase Sólida
4.
Chem Commun (Camb) ; 57(80): 10343-10346, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34528980

RESUMO

Herein, a rapid approach toward the size/morphology-controlled synthesis of [Cu(L-mal)(bipy)·2H2O] (CuLBH) was developed by adjusting the concentrations of 2-methylimidazole (2-MI) and copper ions. The chiral separation efficiency test indicated that the nano-diameter CuLBH exhibited better selective potential towards (±)-1-(1-naphthyl)ethanol (NE) by providing more fully exposed recognition sites. In order to further improve the selectivity for NE enantiomers and avoid the aggregation of MOF nanoparticles, the nanosized CuLBH-decorated carboxylated cellulose (CC) composite CC-CuLBH was designed by controlling the ratio of the solvent and Cu2+, which exhibited much higher enantioselectivity than those of pristine CC and even nano CuLBH.

5.
Angew Chem Int Ed Engl ; 60(44): 23608-23613, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34459532

RESUMO

Herein, we report the first example of using mesoporous hydrogen-bonded organic frameworks (MHOFs) as the protecting scaffold to organize a biocatalytic cascade. The confined microenvironment of MHOFs has robust and large transport channels, allowing the efficient transport of a wide range of biocatalytic substrates. This new MHOF-confined cascade system shows superior activity, extended scope of catalytic substrates, and ultrahigh stability that enables the operation of complex chemical transformations in a porous carrier. In addition, the advantages of MHOF-confined cascades system for point-of-care biosensing are also demonstrated. This study highlights the advantages of HOFs as scaffold for multiple enzyme assemblies, which has huge potential for mimicking complex cellular transformation networks in a controllable manner.

6.
ACS Appl Mater Interfaces ; 13(33): 40070-40078, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387999

RESUMO

Aminothiols are closely related to chronic kidney disease, but little is known regarding levels of related aminothiols in the urine of immunoglobulin A vasculitis with nephritis (IgAVN) patients. Herein, a well-defined core-shell Zr-based metal-organic framework (Zr-MOF) composite SiO2@50Benz-Cys was constructed as a mercury ion affinity material via a solvent-assisted ligand exchange strategy for the selective extraction and enrichment of low-concentration aminothiols in IgAVN patient urine. SiO2@50Benz-Cys was competent to enrich the total glutathione (GSH) and total homocysteine (Hcy) in virtue of the excellent affinity after chelation with mercury ions. The extraction efficiencies were closely related to the pH, dithiothreitol amount, and the dose of functional Zr-MOF. Coupled with HPLC-MS/MS in optimized conditions, GSH and Hcy were determined with low detection limits of 0.5 and 1 nmol L-1, respectively. The recoveries of GSH and Hcy for the urine sample at three spiked levels were in the range of 85.3-105% and 79.5-103%, which showed good precision and accuracy. Benefiting from the matrix interference elimination in the process of extraction, the simultaneous detection of aminothiols in the urine of the healthy group and immunoglobulin A vasculitis (IgAV) and IgAVN patients was successfully carried out, suggesting that the Zr-MOF and the robust method together provided a potential application in the analysis of urinary biomolecules. The analysis of variance (ANOVA) showed that the levels of GSH and Hcy had significant differences between the patients and the control. This work is very valuable as it provides a better understanding of concentration alterations of GSH and Hcy in urine involved with IgAVN for clinical research.


Assuntos
Glutationa/urina , Homocisteína/urina , Estruturas Metalorgânicas/química , Nefrite/diagnóstico , Zircônio/química , Técnicas Biossensoriais , Cromatografia Líquida de Alta Pressão , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dióxido de Silício , Coloração e Rotulagem/métodos , Compostos de Sulfidrila/química , Espectrometria de Massas em Tandem
7.
Anal Chim Acta ; 1176: 338772, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399894

RESUMO

The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Reprodutibilidade dos Testes , Microextração em Fase Sólida , Temperatura , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 55(15): 10502-10513, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34296618

RESUMO

Bromine radicals can pose great impacts on the photochemical transformation of trace organic contaminants in natural and engineered waters. However, the reaction kinetics and mechanisms involved are barely known. In this work, second-order reaction rate constants with Br• and Br2•- were determined for 70 common trace organic contaminants and for 17 model compounds using laser flash photolysis and steady-state competition kinetics. The kBr• values ranged from <108 to (2.86 ± 0.31) × 1010 M-1 s-1 and the kBr2•- values from <105 to (1.18 ± 0.09) × 109 M-1 s-1 at pH 7.0. Six quantitative structure-activity relationships were developed, which allow predicting additional unknown kBr• and kBr2•- values. Single-electron transfer was shown to be a favored pathway for the reactions of Br• and Br2•- with trace organic contaminants, and this was supported by transient spectroscopy and quantum chemical calculations. This study is essential in advancing the scientific understanding of halogen radical-involved chemistry in contaminant transformation.


Assuntos
Bromo , Poluentes Químicos da Água , Halogênios , Cinética , Oxirredução , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 793: 148628, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328997

RESUMO

Due to their wide applications and extensive discharges, pharmaceuticals have recently become a potential risk to aquatic and terrestrial organisms. The uptake of pharmaceuticals have been shown to stimulate plant defense systems and induce phytotoxic effects. Signaling molecules such as plant hormones play crucial roles in plant stress and defense responses, but the relationship between these molecules and pharmaceutical uptake has rarely been investigated. In this study, two common pharmaceuticals, carbamazepine and ibuprofen, and three stress-related plant hormones, jasmonic acid, salicylic acid, and abscisic acid, were simultaneously tracked in the roots and stems of Malabar spinach (Basella alba L.) via an in vivo solid phase microextraction (SPME) method. We also monitored stress-related physiological markers and enzymatic activities to demonstrate plant hormone modulation. The results indicate that pharmaceutical uptake, subsequent stress symptoms, and the defense response were all significantly correlated with the upregulation of plant hormones. Moreover, the plant hormones in the exposure group failed to recover to normal levels, indicating that plants containing pharmaceutical residues might be subject to potential risks.


Assuntos
Reguladores de Crescimento de Plantas , Spinacia oleracea , Carbamazepina/toxicidade , Ibuprofeno/toxicidade , Microextração em Fase Sólida
10.
Anal Chem ; 93(26): 9226-9234, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165288

RESUMO

Herein, a new strategy to increase the sensitivity of a lanthanide metal-organic framework (Ln-MOF) to UO22+ was proposed by using polymeric ligands. By utilizing [Tb(1,3,5-benzenetrisbenzoate)]n (Tb-TBT) MOF as the host, preloaded 2-vinyl terephthalic acid (VTP) was polymerized in situ, which produced a novel fluorescent composite denoted as PVTP⊂Tb-TBT. Benefiting from the coordination of PVTP to the Tb nodes, the polymeric chains performed both as molecular scaffolds that improved the water stability of the framework and as additional antennae that sensitized the photoluminescence of the Tb nodes. More importantly, the detection sensitivity and selectivity of PVTP⊂Tb-TBT to UO22+ were much improved compared to those of Tb-TBT. Detailed characterizations indicated that the incorporation of PVTP efficiently enriched UO22+ in the probe, which promoted the energy dissipation to UO22+. Besides, UO22+ was also supposed to release PVTP from PVTP⊂Tb-TBT and, thus, exposed the open metal sites to water molecules, which interrupted the sensitization effect of PVTP and induced a nonradiative energy dissipation. A limit of detection (LOD) as low as 0.75 nm was recorded by suspending the PVTP⊂Tb-TBT probe in a water sample, far below the limit in drinking water set by the United States Environmental Protection Agency (130 nm). Furthermore, a remotely controlled sampling and an on-site analysis of real water samples were realized by facilely loading PVTP⊂Tb-TBT on thin films (TFs). The LOD for UO22+ was 2.5 nm by using the TFs. This study reports a new strategy for boosting the sensitivity and selectivity of Ln-MOF to monitor UO22+ and expands the application of the strategy to an on-site analysis.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Ligantes , Polímeros , Radioisótopos
11.
Int J Biol Macromol ; 182: 1759-1768, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048839

RESUMO

In this study, zirconium (IV)-impregnated magnetic chitosan graphene oxide (Zr-MCGO) was synthesized for removing fluoride from aqueous solution in batch mode. Characterization approaches (pHpzc, FTIR, SEM, XRD, VSM, Raman, BET, and XPS) proved the successful incorporation of Zr into the adsorbent. Zr-MCGO exhibited a relatively favorable and stable capacity of defluoridation at lower pH with a wide range of pH from 4.0 to 8.0, while there was slightly negative effect of ionic strength on adsorption. In addition, Elovich kinetic model and Koble-Corrigan isotherm model could describe the uptake of fluoride well. The adsorption capacity was 8.84 mg/g at 313 K and Zr-MCGO was easily separated from mixtures using external magnet. Based on the experiments and XPS, electrostatic force, ligand exchange, and Lewis acid-base interaction might be potential adsorption mechanisms. Pseudo-second-order model was more compatible with the desorption process by 0.01 mol/L NaHCO3 solution. Therefore, Zr-MCGO was a promising candidate for defluoridation on wastewater pollution remediation.


Assuntos
Quitosana/química , Fluoretos/isolamento & purificação , Grafite/química , Fenômenos Magnéticos , Água/química , Zircônio/química , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Salinidade , Soluções , Temperatura , Fatores de Tempo
12.
Talanta ; 231: 122336, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965016

RESUMO

Investigation into monosaccharides is critical for studies of oligosaccharides structure and function in biological processes. However, monosaccharides quantification is still challenge due to their isomeric structure and high hydrophilic properties. Besides, it was difficult to obtain isotopic internal standards (IS) of each monosaccharide in complex matrixes. Herein, we developed a novel strategy for the qualification and quantification of monosaccharides in urine using two structure analogs 1-(4-methylphenyl)-3-methyl-5-pyrazolone (MPMP) and1-phenyl-3-methyl-5-pyrazolone (PMP) as non-isotopically paired labeling (NIPL) reagents by liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The derivatized monosaccharides by NIPL method not only had sufficient retention time differences on reversed-phase column, but also exhibited predominant product ion pairs (m/z 189 & m/z 175) in the multiple reaction monitoring (MRM) mode. In this method, PMP labeled standards were adopted as one-to-one internal standards (ISs). 12 urinary monosaccharides were successfully determined and the linear ranges expanded five orders of magnitude with limit of quantification (LOQ) varied from 0.09 ng mL-1 to 0.36 ng mL-1 as well as the accuracy higher than 98.15% and the relative standard derivation (RSD) lower than 7.92%. With assistance of multivariate analysis, the targeted monosaccharide biomarkers were firstly obtained for the diagnosis of bladder cancer. By the inexpensive NIPL reagents-MPMP/PMP, the developed strategy possessed the specific advantages of low cost, simple operation, high sensitivity and high accuracy for the qualification and quantitation of monosaccharides. As expected, this method will provide an alternative application potential for targeted metabolomics analysis.


Assuntos
Monossacarídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Oligossacarídeos
13.
Proc Natl Acad Sci U S A ; 118(16)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853952

RESUMO

Photosynthesis of hydrogen peroxide (H2O2) in ambient conditions remains neither cost effective nor environmentally friendly enough because of the rapid charge recombination. Here, a photocatalytic rate of as high as 114 µmol⋅g-1⋅h-1 for the production of H2O2 in pure water and open air is achieved by using a Z-scheme heterojunction, which outperforms almost all reported photocatalysts under the same conditions. An extensive study at the atomic level demonstrates that Z-scheme electron transfer is realized by improving the photoresponse of the oxidation semiconductor under visible light, when the difference between the Fermi levels of the two constituent semiconductors is not sufficiently large. Moreover, it is verified that a type II electron transfer pathway can be converted to the desired Z-scheme pathway by tuning the excitation wavelengths. This study demonstrates a feasible strategy for developing efficient Z-scheme photocatalysts by regulating photoresponses.

14.
Anal Chim Acta ; 1158: 338422, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863405

RESUMO

Solid phase microextraction (SPME) has potential to be used for the high-performance enrichments of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), which are important biomarkers of PAH exposure. By choosing suitable adsorbent, it is conducive to fabricate new-type of SPME device for improved extraction efficiencies towards OH-PAHs. In this study, a novel method of surface solvent evaporation has been proposed to fabricate SPME thin membrane, integrating the advantages of polydimethylsiloxane (PDMS) and different porous adsorbents. The powdery metal organic framework (Uio66-NH2), porous polymer (powdery polymer aerogel, PPA) and ordered mesoporous carbon (OMC) have been chosen as typical adsorbents and fabricated as thin membranes successfully, indicating the universality of the proposed method for membrane fabrication. Comparing the extraction efficiencies of three prepared membranes towards OH-PAHs, the OMC-PDMS membrane has demonstrated best enrichment efficiencies. The OMC-PDMS membrane was used for the enrichments of trace OH-PAHs in human urine of both smokers and nonsmokers, combining with liquid chromatographic tandem mass spectrometry (LC-MS/MS). The detection limits were in the range of 0.15-0.39 ng L-1, and satisfactory recoveries were found to be 82.1%-115%. It can be seen that the universal strategy to fabricate SPME membrane is helpful to achieve broad-spectrum or selective enrichments of target analytes from complex matrix by simple modulation of membrane components.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Microextração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem
15.
Anal Chim Acta ; 1152: 338226, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648643

RESUMO

Solid-phase extraction (SPE) is a popular technique for environmental sample pretreatment. However, SPE usually requires complex sample pretreatment processes, which is time-consuming and inconvenient for real-time and on-site monitoring. Herein, a solvent-free, rapid, and user-friendly SPE device was developed by coating the polydimethylsiloxane (PDMS)/divinylbenzene (DVB) sorbent on the inner wall of a sample bottle. The extraction process and desorption process were both carried out in the bottle. The analytes trapped in the sorbent were thermally desorbed and simultaneously sucked out from the bottle by an air sampling tube equipped on field-portable GC-MS. Different to previous work, the sample pretreatment process didn't require any complicated and time-consuming steps, such as centrifugation or filtration. The total analysis time for each sample was less than 25 min, which was feasible for rapid on-site detection, and thus avoided the losses and contamination of samples in conventional sample storage and transportation processes. Under optimal conditions, the proposed SPE method exhibited wide linear ranges, low detection limits (0.010-0.036 µg L-1, which were much lower than the maximum levels restricted by the US Environmental Protection Agency and the Chinese GB3838-2002 standard), good intra-bottle repeatability (6.13-7.17%, n = 3) and satisfactory inter-bottle reproducibility (4.73-6.47%, n = 3). Finally, the method was successfully applied to the rapid detection of BTEX in the field. The recoveries of BTEX in spiked water samples ranged from 89.1% to 116.2%. This work presents a novel SPE approach for rapid on-site monitoring in water samples.

16.
Sci Total Environ ; 773: 144708, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582339

RESUMO

Conflicts often exist between the use of pesticides for public health protection and organic farming. A prominent example is the use of insecticides for mosquito control in rice fields designated for organic farming. Rice fields, with static water and other conducive conditions, are favorable mosquito habitats. Best management practices are urgently needed to ensure the integrity of organic farming while addressing the need for public health protection. In this study, we evaluated aerial ultra-low-volume (ULV) applications of two classes of mosquito adulticides, pyrethrins and organophosphates, and their deposition and residues on rice plants throughout an active growing season in the Sacramento Valley of California. Frequent applications of pyrethrin synergized with piperonyl butoxide (PBO) and rotating applications of synergized pyrethrins and naled, an organophosphate, were carried out on two large blocks of rice fields. Aerial ULV application of either synergized pyrethrins or naled was able to generate uniform droplets above the fields with high efficacy for mosquito control. Rice leaf samples were collected before and after a subset of applications, and rice grains were sampled at harvest. Frequent applications of synergized pyrethrins resulted in some accumulation of the synergist PBO on rice leaves, but pyrethrins and naled dissipated rapidly from the leaves after each application with no noticeable accumulation over repeated applications. At harvest, no detectable residues of the pesticides or PBO were found in the rice grains. The absence of pesticide residues in the rice grains at harvest suggested that the ULV aerial application led to deposition of only very low levels of residues on rice plants during the growing season. When coupled with the short persistence and/or poor mobility of the insecticides, such applications resulted in negligible pesticide residues in rice grains.


Assuntos
Inseticidas , Oryza , Resíduos de Praguicidas , Piretrinas , Controle de Mosquitos , Agricultura Orgânica , Butóxido de Piperonila , Piretrinas/análise
17.
J Chromatogr A ; 1640: 461961, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582515

RESUMO

Detection of illicit drugs in the environmental samples has been challenged as the consumption increases globally. Current review examines the recent developments and applications of sample preparation techniques for illicit drugs in solid, liquid, and gas samples. For solid samples, traditional sample preparation methods such as liquid-phase extraction, solid-phase extraction, and the ones with external energy including microwave-assisted, ultrasonic-assisted, and pressurized liquid extraction were commonly used. The sample preparation methods mainly applied for liquid samples were microextraction techniques including solid-phase microextraction, microextraction by packed sorbent, dispersive solid-phase extraction, dispersive liquid-liquid microextraction, hollow fiber-based liquid-phase microextraction, and so on. Capillary microextraction of volatiles and airborne particulate sampling were primarily utilized to extract illicit drugs from gas samples. Besides, the paper introduced recently developed instrumental techniques applied to detect illicit drugs. Liquid chromatograph mass spectrometry and gas chromatograph mass spectrometry were the most widely used methods for illicit drugs samples. In addition, the development of ambient mass spectrometry techniques, such as desorption electrospray ionization mass spectrometry and paper spray mass spectrometry, created potential for rapid in-situ analysis.


Assuntos
Métodos Analíticos de Preparação de Amostras , Poluentes Ambientais/análise , Drogas Ilícitas/análise , Microextração em Fase Líquida , Espectrometria de Massas , Microextração em Fase Sólida
18.
Anal Chim Acta ; 1145: 79-86, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453883

RESUMO

Currently, nano-titanium dioxide (nTiO2) is considered an emerging environmental contaminant. Bottlenecked by the traditional destructive and lethal sampling methods, nTiO2's effect in living plants is poorly investigated. Here, in vivo tracing of endogenous salicylic acids at regular intervals was performed by using solid phase microextraction (SPME) technique for evaluating the effects of nTiO2 on plants. By planting aloe in soil containing varying amounts of nTiO2, the titanium (Ti) element accumulated in the leaves to concentrations and then reached the maximum of 1.1 ± 0.4 µg/g after nTiO2 exceeding 0.1 g/kg. The levels of salicylic acid (SA) and acetylsalicylic acid (ASA) were up-regulated upon the exposure to nTiO2, while were positively correlated to the contents of Ti. Moreover, the increased malondialdehyde, decreased total superoxide dismutase and fluctuated glutathione along with the addition of nTiO2 demonstrated the oxidative stress caused by nTiO2. Meanwhile, apparent growth indicators including leaf elongation, plant fresh weight and root development were influenced, which further confirmed the toxicity of nTiO2 imparted on aloe. This study presents the possibility of using salicylic acids as biomarkers for revealing the toxicity of nTiO2 on plants in addition to the other biomarkers and biomass data, and the in vivo SPME technique is powerful for their monitoring.


Assuntos
Nanopartículas , Salicilatos , Biomarcadores , Estresse Oxidativo , Titânio/toxicidade
19.
Food Chem ; 343: 128508, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248840

RESUMO

A novel copper hydroxy phosphate@MOF composite DMP-Cu decorated by 2, 5-dimercapto-1, 3, 4-thiadiazol was facilely prepared and characterized. A dispersive SPE strategy using DMP-Cu as adsorbent combined with atomic fluorescence spectroscopy was developed for the selective capture of trace total mercury in rice sample. The adsorption mechanism showed that the Hg2+ removal process was fitted with pseudo second-order kinetics and the Langmuir adsorption model. The adsorbent was easy to be regenerated and the maximum adsorption capacity for the removal of Hg2+ was 249.5 mg g-1 at the optimal pH of 4. X-ray photoelectron spectroscopy and Raman spectra verified the selective and strong interaction between Hg2+ and thiol/nitrogen-containing functional groups of DMTZ on DMP-Cu. The trace total mercury in rice samples was determined with detection limit of 0.0125 ng mL-1 and relative standard deviation below 6%. The high recoveries were obtained in range of 98.8-109% for the spiked rice samples.


Assuntos
Contaminação de Alimentos/análise , Mercúrio/análise , Estruturas Metalorgânicas/química , Oryza/química , Adsorção , Cobre/química , Análise de Alimentos/métodos , Concentração de Íons de Hidrogênio , Cinética , Fosfatos/química , Espectroscopia Fotoeletrônica , Espectrometria de Fluorescência , Análise Espectral Raman , Compostos de Sulfidrila/química , Tiadiazóis/química
20.
Chemosphere ; 263: 127967, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297026

RESUMO

Recently, the exposure of nanoplastics (NPs) in the environment has received extensive attention. Research concerning their fate and transport in the aquatic environment is very important and urgent. In this study, the influence of two sources of natural organic matter (NOM) on the behaviour of NPs were investigated in view of the complexity of NOM. Humic acid (HA), Suwannee River humic acid (SRHA) and Upper Mississippi River NOM (MRNOM) were chosen to represent pedogenic NOM, while bovine serum albumin (BSA) was on behalf of aquagenic NOM. The results showed that NOM could reduce the aggregation and sedimentation of NPs, exhibiting excellent stabilization effect. The stability effect was affected by the concentrations and the sources of NOMs. For pedogenic NOMs, the stabilization effect was caused by adsorption modes with different microscopic morphologies through specific functional groups, while it was induced by the mode of steric stabilization in the presence of BSA. Spectroscopic method and micromorphology study further provided a new insight into exploring the possible mechanism of the interaction between NPs and NOMs.


Assuntos
Substâncias Húmicas , Microplásticos , Adsorção , Substâncias Húmicas/análise , Mississippi , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...