Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemosphere ; 286(Pt 1): 131683, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34351278

RESUMO

Butachlor being an important member of chloroacetanilide herbicides, is frequently used in agriculture to control unwanted weeds. Exposure to butachlor can induce cancer, human lymphocyte aberration, and immunotoxic effects in animals. The current experimental trial was executed to determine the potential risks of herbicide butachlor to immunotoxicity and its mechanism of adverse effects on the spleen. For this purpose, mice were exposed to 8 mg/kg butachlor for 28 days, and the toxicity of butachlor on the spleen of mice was evaluated. We found that butachlor exposure led to an increase in serum ALB, GLU, TC, TG, and TP and changes in the morphological structure of the spleen of mice. More importantly, results showed that butachlor significantly increased the expression level of ATG-5, decreased the protein expression of LC3B and M-TOR, and significantly decreased the mRNA content of M-TOR and p62. Results revealed that the mRNA contents of APAF-1, CYTC, and CASP-9 related genes were significantly decreased after butachlor treatment. Subsequently, the mRNA levels of inflammatory cytokines (IL-1ß, TNF-α, IL-10) were reduced in the spleen of treated mice. This study suggested that butachlor induce spleen toxicity and activate the immune response of spleen tissue by targeting the CYTC/BCL2/M-TOR pathway and caspase cascading activation of spleen autophagy and apoptosis pathways which may ultimately lead to immune system disorders.


Assuntos
Herbicidas , Acetanilidas , Animais , Apoptose , Autofagia , Herbicidas/toxicidade , Camundongos , Baço
2.
Ecotoxicol Environ Saf ; 224: 112662, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411823

RESUMO

Fluorine being a well-known and essential element for normal physiological functions of tissues of different organisms is frequently used for growth and development of body. The mechanisms of adverse and injurious impacts of fluoride are not clear and still are under debate. Therefore, this study was executed to ascertain the potential mechanisms of sodium fluoride in liver tissues of ducks. For this purpose, a total of 14 ducks were randomly divided and kept in two groups including control group and sodium fluoride treated group. The ducks in control group were fed with normal diet while the ducks in other group were exposed to sodium fluoride (750 mg/kg) for 28 days. The results showed that exposure to sodium fluoride induced deleterious effects in different liver tissues of ducks. The results indicated that mRNA levels of Cas-3, Cas-9, p53, Apaf-1, Bax and Cyt-c were increased in treated ducks with significantly higher mRNA level of Cas-9 and lower levels of the mRNA level of Bcl-2 as compared to untreated control group (P < 0.01). The results showed that protein expression levels of Bax and p53 were increased while protein expression level of Bcl-2 was reduced in treated ducks. No difference was observed in protein expression level of Cas-3 between treated and untreated ducks. The results of this study suggest that sodium fluoride damages the normal structure of liver and induces abnormal process of apoptosis in hepatocyte, which provide a new idea for elucidating the mechanisms of sodium fluoride induced hepatotoxicity in ducks.

3.
Chemosphere ; 283: 131226, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146870

RESUMO

Butachlor is a systemic herbicide widely applied on wheat, rice, beans, and different other crops, and is frequently detected in groundwater, surface water, and soil. Therefore, it is necessary to investigate the potential adverse health risks and the underlying mechanisms of hepatotoxicity caused by exposure to butachlor in invertebrates, other nontarget animals, and public health. For this reason, a total of 20 mice were obtained and randomly divided into two groups. The experimental mice in one group were exposed to butachlor (8 mg/kg) and the mice in control group received normal saline. The liver tissues were obtained from each mice at day 21 of the trial. Results indicated that exposure to butachlor induced hepatotoxicity in terms of swelling of hepatocyte, disorders in the arrangement of hepatic cells, increased concentrations of different serum enzymes such as alkaline phosphate (ALP) and aspartate aminotransferase (AST). The results on the mechanisms of liver toxicity indicated that butachlor induced overexpression of Apaf-1, Bax, Caspase-3, Caspase-9, Cyt-c, p53, Beclin-1, ATG-5, and LC3, whereas decreases the expression of Bcl-2 and p62 suggesting abnormal processes of apoptosis and autophagy. Results on different metabolites (61 differential metabolites) revealed upregulation of PE and LysoPC, whereas downregulation of SM caused by butachlor exposure in mice led to the disruption of glycerophospholipids and lipid metabolism in the liver. The results of our experimental research indicated that butachlor induces hepatotoxic effects through disruption of lipid metabolism, abnormal mechanisms of autophagy, and apoptosis that provides new insights into the elucidation of the mechanisms of hepatotoxicity in mice induced by butachlor.


Assuntos
Herbicidas , Acetanilidas/toxicidade , Animais , Herbicidas/toxicidade , Metabolismo dos Lipídeos , Fígado , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...