Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Cells ; 44(11): 851-860, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819398

RESUMO

Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

2.
Biophys Physicobiol ; 18: 244-253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745809

RESUMO

The cell is three-dimensionally and dynamically organized into cellular compartments, including the endoplasmic reticulum, mitochondria, vesicles, and nucleus, which have high relative molecular density. The structure and functions of these compartments and organelles may be deduced from the diffusion and interaction of related biomolecules. Among these cellular components, various protein molecules can freely access the nucleolus or mitotic chromosome through Brownian diffusion, even though they have a densely packed structure. However, physicochemical properties of the nucleolus and chromosomes, such as molecular density and volume, are not yet fully understood under changing cellular conditions. Many studies have been conducted based on high-resolution imaging and analysis techniques using fluorescence. However, there are limitations in imaging only fluorescently labeled molecules, and cytotoxicity occurs during three-dimensional imaging. Alternatively, the recently developed label-free three-dimensional optical diffraction tomography (ODT) imaging technique can divide various organelles in cells into volumes and analyze them by refractive index, although specific molecules cannot be observed. A previous study established an analytical method that provides comprehensive insights into the physical properties of the nucleolus and mitotic chromosome by utilizing the advantages of ODT and fluorescence techniques, such as fluorescence correlation spectroscopy and confocal laser scanning microscopy. This review article summarizes a recent study and discusses the future aspects of the ODT for cellular compartments.

3.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681958

RESUMO

Chemotherapy is one of the most effective treatments for cancer. However, intracellular delivery of many anticancer drugs is hindered by their hydrophobicity and low molecular weight. Here, we describe highly biocompatible and biodegradable amphiphilic vitamin conjugates comprising hydrophobic vitamin E and hydrophilic vitamin B labeled with dual pH and glutathione-responsive degradable linkages. Vitamin-based micelles (vitamicelles), formed by self-assembly in aqueous solutions, were optimized based on their stability after encapsulation of doxorubicin (DOX). The resulting vitamicelles have great potential as vehicles for anticancer drugs because they show excellent biocompatibility (>94% after 48 h of incubation) and rapid biodegradability (>90% after 2.5 h). Compared with free DOX, DOX-loaded vitamicelles showed a markedly enhanced anticancer effect as they released the drug rapidly and inhibited drug efflux out of cells efficiently. By exploiting these advantages, this study not only provides a promising strategy for circumventing existing challenges regarding the delivery of anticancer drugs but also extends the utility of current DOX-induced chemotherapy.

4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361059

RESUMO

In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.


Assuntos
Núcleo Celular/metabolismo , Dactinomicina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transcrição Genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética
5.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208525

RESUMO

Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.


Assuntos
Corantes Fluorescentes , Hibridização de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos , Poli A , RNA Mensageiro/genética , Células HeLa , Humanos , Sensibilidade e Especificidade , Espectrometria de Fluorescência
6.
Cell Death Dis ; 12(8): 747, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321461

RESUMO

Tumor-derived exosomes (TEXs) contain enriched miRNAs, and exosomal miRNAs can affect tumor growth, including cell proliferation, metastasis, and drug resistance through cell-to-cell communication. We investigated the role of exosomal miR-1260b derived from non-small cell lung cancer (NSCLC) in tumor progression. Exosomal miR-1260b induced angiogenesis by targeting homeodomain-interacting protein kinase-2 (HIPK2) in human umbilical vein endothelial cells (HUVECs). Furthermore, exosomal miR-1260b or suppression of HIPK2 led to enhanced cellular mobility and cisplatin resistance in NSCLC cells. In patients with NSCLC, the level of HIPK2 was significantly lower in tumor tissues than in normal lung tissues, while that of miR-1260b was higher in tumor tissues. HIPK2 and miR-1260b expression showed an inverse correlation, and this correlation was strong in distant metastasis. Finally, the expression level of exosomal miR-1260b in plasma was higher in patients with NSCLC than in healthy individuals, and higher levels of exosomal miR-1260b were associated with high-grade disease, metastasis, and poor survival. In conclusion, exosomal miR-1260b can promote angiogenesis in HUVECs and metastasis of NSCLC by regulating HIPK2 and may serve as a prognostic marker for lung cancers.

7.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904408

RESUMO

The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.


Assuntos
Proteínas Wnt/metabolismo , Animais , Difusão , Embrião não Mamífero/metabolismo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência , Proteínas Wnt/análise , Xenopus laevis/metabolismo
8.
Adv Exp Med Biol ; 1310: 1-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834430

RESUMO

Confocal laser scanning microscopy (CLSM) and related microscopic techniques allow a unique and versatile approach to image and analyze living cells due to their specificity and high sensitivity. Among confocal related techniques, fluorescence correlation methods, such as fluorescence correlation spectroscopy (FCS) and dual-color fluorescence cross-correlation spectroscopy (FCCS), are highly sensitive biophysical methods for analyzing the complex dynamic events of molecular diffusion and interaction change in live cells as well as in solution by exploiting the characteristics of fluorescence signals. Analytical and quantitative information from FCS and FCCS coupled with fluorescence images obtained from CLSM can now be applied in convergence science such as drug delivery and nanomedicine, as well as in basic cell biology. In this chapter, a brief introduction into the physical parameters that can be obtained from FCS and FCCS is first provided. Secondly, experimental examples of the methods for evaluating the parameters is presented. Finally, two potential FCS and FCCS applications for convergence science are introduced in more detail.


Assuntos
Microscopia Confocal , Cor , Difusão , Espectrometria de Fluorescência , Coloração e Rotulagem
9.
Adv Exp Med Biol ; 1310: 115-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834435

RESUMO

Various silica-based fluorescent nanoparticles ((Si-FNP)) with magnetic or metal cores represent a standard class of nanoparticles offering new opportunities for high-resolution cellular imaging and biomedicine applications, such as drug delivery. Their high solubility, homogeneity, biocompatibility, and chemical inertness Si-FNPs make them attractive probes for correlative light and electron microscopy (CLEM) studies, offering novel insights into nanoparticle-cell interactions in detail. In the present chapter, we present a procedure for imaging silica-based fluorescent magnetic core-shell nanoparticles (Si-FMNP) at the single-particle scale in cells. Our method facilitates the acquisition of information on the extracellular and intercellular distribution of nanoparticles and their various interactions with various cellular organelles when cells are cultured and electroporated by NPs. In addition, such information could facilitate the evaluation of the efficacy of nanocarriers designed for drug delivery.


Assuntos
Nanopartículas , Comunicação Celular , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica , Dióxido de Silício
10.
Adv Exp Med Biol ; 1310: 133-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834436

RESUMO

Since their development in the 1960s, immuno-gold techniques have been steadily used in biomedical science, because these techniques are applicable to all kinds of antigens, from viruses to animal tissues. Immuno-gold staining exploits antigen-antibody reactions and is used to investigate locations and interactions of components in the ultrastructure of tissues, cells, and particles. These methods are increasingly used with advanced technologies, such as correlative light and electron microscopy and cryo-techniques. In this protocol, we introduce the principles and technical details of recent advances in this area and discuss their advantages and limitations.


Assuntos
Antígenos , Ouro , Animais , Imuno-Histoquímica , Microscopia Eletrônica , Coloração e Rotulagem
11.
FASEB J ; 35(3): e21369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33554392

RESUMO

Transmembrane 4 L six family member 5 (TM4SF5) translocates intracellularly and promotes cell migration, but how subcellular TM4SF5 traffic is regulated to guide cellular migration is unknown. We investigated the influences of the extracellular environment and intracellular signaling on the TM4SF5 traffic with regard to migration directionality. Cell adhesion to fibronectin (FN) but not poly-l-lysine enhanced the traffic velocity and straightness of the TM4SF5WT (but not palmitoylation-deficient mutant TM4SF5 Pal - ) toward the leading edges, depending on tubulin acetylation. Acetylated-microtubules in SLAC2B-positive cells reached mostly the juxtanuclear regions, but reached-out toward the leading edges upon SLAC2B suppression. TM4SF5 expression caused SLAC2B not to be localized at the leading edges. TM4SF5 colocalization with HDAC6 depended on paxillin expression. The trimeric complex consisting of TM4SF5, HDAC6, and SLAC2B might, thus, be enriched at the perinuclear cytosols toward the leading edges. More TM4SF5WT translocation to the leading edges was possible when acetylated-microtubules reached the frontal edges following HDAC6 inhibition by paxillin presumably at new cell-FN adhesions, leading to persistent cell migration. Collectively, this study revealed that cell-FN adhesion and microtubule acetylation could control intracellular traffic of TM4SF5 vesicles to the leading edges via coordinated actions of paxillin, SLAC2B, and HDAC6, leading to TM4SF5-dependent cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Membrana Celular/metabolismo , Matriz Extracelular/fisiologia , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Acetilação , Adesão Celular , Movimento Celular , Fibronectinas/fisiologia , Células Hep G2 , Desacetilase 6 de Histona/fisiologia , Humanos , Paxilina/fisiologia , Transporte Proteico
12.
Mol Ther Nucleic Acids ; 23: 643-656, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33575111

RESUMO

Adult hippocampal neurogenesis supports the structural and functional plasticity of the brain, while its decline is associated with neurodegeneration common in Alzheimer's disease (AD). Although the dysregulation of certain microRNAs (miRNAs) in AD have been observed, the effects of miRNAs on hippocampal neurogenesis are largely unknown. In this study, we demonstrated miR-351-5p as a causative factor in hippocampal neural progenitor cell death through modulation of the mitochondrial guanosine triphosphatase (GTPase), Miro2. Downregulation of Miro2 by siMiro2 induced cell death, similar to miR-351-5p, whereas ectopic Miro2 expression using an adenovirus abolished these effects. Excessively fragmented mitochondria and dysfunctional mitochondria were indexed by decreased mitochondrial potential, and increased reactive oxygen species were identified in miR-351-5p-induced cell death. Moreover, subsequent induction of mitophagy via Pink1 and Parkin was observed in the presence of miR-351-5p and siMiro2. The suppression of mitochondrial fission by Mdivi-1 completely inhibited cell death by miR-351-5p. miR-351-5p expression increased whereas the level of Miro2 decreased in the hippocampus of AD model mice, emulating expression in AD patients. Collectively, the data indicate the mitochondrial fission and accompanying mitophagy by miR-351-5p/Miro2 axis as critical in hippocampal neural progenitor cell death, and a potential therapeutic target in AD.

13.
J Crohns Colitis ; 15(8): 1291-1304, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33460440

RESUMO

BACKGROUND AND AIMS: Mutations in XIAP can lead to the development of treatment-refractory severe paediatric Crohn's disease [CD], for which haematopoietic stem cell transplantation is the primary therapeutic option. The interpretation of variants of uncertain significance [VUSs] in XIAP needs to be scrutinized. METHODS: Targeted next-generation sequencing was performed for 33 male paediatric patients with refractory CD admitted at a tertiary referral hospital. To obtain functional data, biomolecular cell assays and supercomputing molecular dynamics simulations were performed. RESULTS: Nine unrelated male patients harboured hemizygous XIAP variants. Four known pathogenic variants and one novel pathogenic variant [p.Lys168Serfs*12] were identified in five patients, and two novel VUSs [p.Gly205del and p.Pro260Ser] and one known VUS [p.Glu350del] were identified in the remaining four. Among children with VUSs, only the subject with p.Gly205del exhibited defective NOD2 signalling. Using molecular dynamics simulation, we determined that the altered backbone torsional energy of C203 in XIAP of p.G205del was ~2 kcal/mol, suggesting loss of zinc binding in the mutant XIAP protein and poor coordination between the mutant XIAP and RIP2 proteins. Elevated auto-ubiquitination of zinc-depleted p.G205del XIAP protein resulted in XIAP protein deficiency. CONCLUSION: A high prevalence of XIAP deficiency was noted among children with refractory CD. Advanced functional studies decreased the subjectivity in the case-level interpretation of XIAP VUSs and directed consideration of haematopoietic stem cell transplantation.

14.
Materials (Basel) ; 13(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255438

RESUMO

Uniformly parallel Au-coated ZnO nanorods have previously been shown to amplify local Raman signals, providing increased sensitivity to disease markers in the detection of inflammation and cancer. However, practical and cost-effective fabrication methods of substrates for surface-enhanced Raman spectroscopy (SERS) fail to produce highly uniform surfaces. Here, the feasibility of Raman enhancement on less-uniform substrates is assessed. ZnO nanorod structures were fabricated by hydrothermal synthesis, starting from spin-coated seed substrates. Following analysis, the nanostructures were coated with Au to create stochastically variant substrates. The non-uniformity of the fabricated Au-coated ZnO nanorod structures is confirmed morphologically by FE-SEM and structurally by X-ray diffraction, and characterized by the angular distributions of the nanorods. Monte Carlo finite element method simulations matching the measured angular distributions and separations predicted only moderate increases in the overall Raman enhancement with increasing uniformity. Highly variant substrates exhibited approximately 76% of the Raman enhancement of more uniform substrates in simulations and experiments. The findings suggest that, although highly inhomogeneous Au-coated ZnO nanorod substrates may not attain the same Raman enhancement as more uniform substrates, the relaxation of fabrication tolerances may be economically viable.

15.
Materials (Basel) ; 14(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374548

RESUMO

Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.

16.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867271

RESUMO

ADAR (adenosine deaminase acting on RNA) catalyzes the deamination of adenosine to generate inosine, through its binding to double-stranded RNA (dsRNA), a phenomenon known as RNA editing. One of the functions of ADAR1 is suppressing the type I interferon (IFN) response, but its mechanism in gastric cancer is not clearly understood. We analyzed changes in RNA editing and IFN signaling in ADAR1-depleted gastric cancer cells, to clarify how ADAR1 regulates IFN signaling. Interestingly, we observed a dramatic increase in the protein level of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 9 (IRF9) upon ADAR1 knockdown, in the absence of type I or type II IFN treatment. However, there were no changes in protein expression or localization of the mitochondrial antiviral signaling protein (MAVS) and interferon alpha and beta-receptor subunit 2 (IFNAR2), the two known mediators of IFN production. Instead, we found that miR-302a-3p binds to the untranslated region (UTR) of IRF9 and regulate its expression. The treatment of ADAR1-depleted AGS cells with an miR-302a mimic successfully restored IRF9 as well as STAT1 protein level. Hence, our results suggest that ADAR1 regulates IFN signaling in gastric cancer through the suppression of STAT1 and IRF9 via miR-302a, which is independent from the RNA editing of known IFN production pathway.


Assuntos
Adenosina Desaminase/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferons/metabolismo , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Fator de Transcrição STAT2/metabolismo , Neoplasias Gástricas/genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Edição de RNA , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo
17.
Theranostics ; 10(18): 7974-7992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724453

RESUMO

Breast cancer (BC) is one of the most common cancers in women. TNBC (Triple-negative breast cancer) has limited treatment options and still lacks viable molecular targets, leading to poor outcomes. Recently, RNA-binding proteins (RBPs) have been shown to play crucial roles in human cancers, including BC, by modulating a number of oncogenic phenotypes. This suggests that RBPs represent potential molecular targets for BC therapy. Methods: We employed genomic data to identify RBPs specifically expressed in TNBC. NONO was silenced in TNBC cell lines to examine cell growth, colony formation, invasion, and migration. Gene expression profiles in NONO-silenced cells were generated and analyzed. A high-throughput screening for NONO-targeted drugs was performed using an FDA-approved library. Results: We found that the NONO RBP is highly expressed in TNBC and is associated with poor patient outcomes. NONO binds to STAT3 mRNA, increasing STAT3 mRNA levels in TNBC. Surprisingly, NONO directly interacts with STAT3 protein increasing its stability and transcriptional activity, thus contributing to its oncogenic function. Importantly, high-throughput drug screening revealed that auranofin is a potential NONO inhibitor and inhibits cell growth in TNBC. Conclusions: NONO is an RBP upstream regulator of both STAT3 RNA and protein levels and function. It represents an important and clinically relevant promoter of growth and resistance of TNBCs. NONO is also therefore a potential therapeutic target in TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Nanopartículas/química , Medicina de Precisão/métodos , Proteínas de Ligação a RNA/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Nanomedicina Teranóstica/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
18.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963931

RESUMO

Exosomes are nano-sized membranous vesicles produced by nearly all types of cells. Since exosome-like vesicles are produced in an evolutionarily conserved manner for information and function transfer from the originating cells to recipient cells, an increasing number of studies have focused on their application as therapeutic agents, drug delivery vehicles, and diagnostic targets. Analysis of the in vivo distribution of exosomes is a prerequisite for the development of exosome-based therapeutics and drug delivery vehicles with accurate prediction of therapeutic dose and potential side effects. Various attempts to evaluate the biodistribution of exosomes obtained from different sources have been reported. In this review, we examined the current trends and the advantages and disadvantages of the methods used to determine the biodistribution of exosomes by molecular imaging. We also reviewed 29 publications to compare the methods employed to isolate, analyze, and label exosomes as well as to determine the biodistribution of labeled exosomes.


Assuntos
Exossomos/metabolismo , Imagem Molecular/métodos , Animais , Sistemas de Liberação de Medicamentos , Humanos , Distribuição Tecidual
19.
Cell Mol Life Sci ; 77(12): 2367-2386, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31471680

RESUMO

Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid ß (Aß)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.


Assuntos
Apolipoproteínas E/metabolismo , Exossomos/metabolismo , Transporte Proteico/fisiologia , Selenoproteína P/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Cells ; 8(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683735

RESUMO

The cell nucleus is a three-dimensional, dynamic organelle organized into subnuclear compartments such as chromatin and nucleoli. The structure and function of these compartments are maintained by diffusion and interactions between related factors as well as by dynamic and structural changes. Recent studies using fluorescent microscopic techniques suggest that protein factors can access and are freely mobile in heterochromatin and in mitotic chromosomes, despite their densely packed structure. However, the physicochemical properties of the chromosome during cell division are not fully understood. In the present study, characteristic properties such as the refractive index (RI), volume of the mitotic chromosomes, and diffusion coefficient (D) of fluorescent probes inside the chromosome were quantified using an approach combining label-free optical diffraction tomography with complementary confocal laser-scanning microscopy and fluorescence correlation spectroscopy. Variations in these parameters correlated with osmotic conditions, suggesting that changes in RI are consistent with those of the diffusion coefficient for mitotic chromosomes and cytosol. Serial RI tomography images of chromosomes in live cells during mitosis were compared with three-dimensional confocal micrographs to demonstrate that compaction and decompaction of chromosomes induced by osmotic change were characterized by linked changes in chromosome RI, volume, and the mobilities of fluorescent proteins.


Assuntos
Cromossomos/metabolismo , Mitose , Tomografia/métodos , Animais , Linhagem Celular , Meios de Cultura/química , Citosol/química , Masculino , Microscopia Confocal , Cervo Muntjac
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...