Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3308, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620841

RESUMO

While grain boundaries (GBs) in conventional inorganic semiconductors are frequently considered as detrimental for photogenerated carrier transport, their exact role remains obscure for the emerging hybrid perovskite semiconductors. A primary challenge for GB-property investigations is that experimentally they need to be performed at the top surface, which is not only insensitive to depth-dependent inhomogeneities but also could be susceptible to topographic artifacts. Accordingly, we have developed a unique approach based on tomographic atomic force microscopy, achieving a fully-3D, photogenerated carrier transport map at the nanoscale in hybrid perovskites. This reveals GBs serving as highly interconnected conducting channels for carrier transport. We have further discovered the coexistence of two GB types in hybrid perovskites, one exhibiting enhanced carrier mobilities, while the other is insipid. Our approach reveals otherwise inaccessible buried features and previously unresolved conduction pathways, crucial for optimizing hybrid perovskites for various optoelectronic applications including solar cells and photodetectors.

2.
Nat Commun ; 11(1): 151, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919343

RESUMO

State-of-the-art halide perovskite solar cells have bandgaps larger than 1.45 eV, which restricts their potential for realizing the Shockley-Queisser limit. Previous search for low-bandgap (1.2 to 1.4 eV) halide perovskites has resulted in several candidates, but all are hybrid organic-inorganic compositions, raising potential concern regarding device stability. Here we show the promise of an inorganic low-bandgap (1.38 eV) CsPb0.6Sn0.4I3 perovskite stabilized via interface functionalization. Device efficiency up to 13.37% is demonstrated. The device shows high operational stability under one-sun-intensity illumination, with T80 and T70 lifetimes of 653 h and 1045 h, respectively (T80 and T70 represent efficiency decays to 80% and 70% of the initial value, respectively), and long-term shelf stability under nitrogen atmosphere. Controlled exposure of the device to ambient atmosphere during a long-term (1000 h) test does not degrade the efficiency. These findings point to a promising direction for achieving low-bandgap perovskite solar cells with high stability.

4.
Nat Commun ; 10(1): 4145, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515482

RESUMO

Crystallographic dislocation has been well-known to be one of the major causes responsible for the unfavorable carrier dynamics in conventional semiconductor devices. Halide perovskite has exhibited promising applications in optoelectronic devices. However, how dislocation impacts its carrier dynamics in the 'defects-tolerant' halide perovskite is largely unknown. Here, via a remote epitaxy approach using polar substrates coated with graphene, we synthesize epitaxial halide perovskite with controlled dislocation density. First-principle calculations and molecular-dynamics simulations reveal weak film-substrate interaction and low density dislocation mechanism in remote epitaxy, respectively. High-resolution transmission electron microscopy, high-resolution atomic force microscopy and Cs-corrected scanning transmission electron microscopy unveil the lattice/atomic and dislocation structure of the remote epitaxial film. The controlling of dislocation density enables the unveiling of the dislocation-carrier dynamic relation in halide perovskite. The study provides an avenue to develop free-standing halide perovskite film with low dislocation density and improved carried dynamics.

5.
Nat Commun ; 10(1): 16, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604757

RESUMO

There has been an urgent need to eliminate toxic lead from the prevailing halide perovskite solar cells (PSCs), but the current lead-free PSCs are still plagued with the critical issues of low efficiency and poor stability. This is primarily due to their inadequate photovoltaic properties and chemical stability. Herein we demonstrate the use of the lead-free, all-inorganic cesium tin-germanium triiodide (CsSn0.5Ge0.5I3) solid-solution perovskite as the light absorber in PSCs, delivering promising efficiency of up to 7.11%. More importantly, these PSCs show very high stability, with less than 10% decay in efficiency after 500 h of continuous operation in N2 atmosphere under one-sun illumination. The key to this striking performance of these PSCs is the formation of a full-coverage, stable native-oxide layer, which fully encapsulates and passivates the perovskite surfaces. The native-oxide passivation approach reported here represents an alternate avenue for boosting the efficiency and stability of lead-free PSCs.

6.
Chem Rev ; 119(5): 3193-3295, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30387358

RESUMO

Halide perovskites are an intriguing class of materials that have recently attracted considerable attention for use as the active layer in thin film optoelectronic devices, including thin-film transistors, light-emitting devices, and solar cells. The "soft" nature of these materials, as characterized by their low formation energy and Young's modulus, and high thermal expansion coefficients, not only enables thin films to be fabricated via low-temperature deposition methods but also presents rich opportunities for manipulating film formation. This comprehensive review explores how the unique chemistry of these materials can be exploited to tailor film growth processes and highlights the connections between processing methods and the resulting film characteristics. The discussion focuses principally on methylammonium lead iodide (CH3NH3PbI3 or MAPbI3), which serves as a useful and well-studied model system for examining the unique attributes of halide perovskites, but various other important members of this family are also considered. The resulting film properties are discussed in the context of the characteristics necessary for achieving high-performance optoelectronic devices and accurate measurement of physical properties.

7.
Chemistry ; 24(10): 2305-2316, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29205559

RESUMO

The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area.

8.
Angew Chem Int Ed Engl ; 56(41): 12658-12662, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671739

RESUMO

The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single-phase hybrid perovskites of (FAPbI3 )1-x (CsSnI3 )x (0

9.
Angew Chem Int Ed Engl ; 56(26): 7674-7678, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524450

RESUMO

Methylammonium-mediated phase-evolution behavior of FA1-x MAx PbI3 mixed-organic-cation perovskite (MOCP) is studied. It is found that by simply enriching the MOCP precursor solutions with excess methylammonium cations, the MOCPs form via a dynamic composition-tuning process that is key to obtaining MOCP thin films with superior properties. This simple chemical approach addresses several key challenges, such as control over phase purity, uniformity, grain size, composition, etc., associated with the solution-growth of MOCP thin films with targeted compositions.

10.
Angew Chem Int Ed Engl ; 55(47): 14723-14727, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27766739

RESUMO

Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH4 PbI3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3 NH3 PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4 PbI3 -to-CH3 NH3 PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.

11.
Nat Commun ; 7: 12693, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562148

RESUMO

Interfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes. Our results indicate preferential wetting of confined graphene in comparison with gold or mica surfaces because of specific interactions of the electrolyte with the graphene surface. In addition, wetting of a confined pore proceeds via a profoundly different mechanism compared with wetting of a macroscopic surface. We further reveal the existence of molecularly layered structures of the confined electrolyte. Nanoscopic confinement of less than 4-5 nm and the presence of water decrease the mobility of the electrolyte. These results suggest a lower limit for the pore diameter in nanostructured electrodes.

12.
Nat Mater ; 15(8): 804-9, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443899
13.
Chem Commun (Camb) ; 52(45): 7273-5, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181497

RESUMO

The α→δ phase transition, which occurs favorably in planar films of a black α-HC(NH2)2PbI3 (α-FAPbI3) perovskite in the amibent, is retarded when α-FAPbI3 is deposited upon mesoporous TiO2 scaffolds. It is hypothesized that this is due to the synergistic effect of the partial encapsulation of α-FAPbI3 by the mesoporous TiO2 and the elevated activation energy for the transition reaction associated with the substantial increase of the TiO2/α-FAPbI3 interfacial area in the mesoscopic system.

14.
J Am Chem Soc ; 138(17): 5535-8, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27088448

RESUMO

Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(═NH)NH2 (formamidine or FA) gas at 150 °C, which leads to rapid displacement of the MA(+) cations by FA(+) cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapid chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach ∼18%.

15.
Nano Lett ; 16(6): 3434-41, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27116651

RESUMO

Perovskite solar cells (PSCs) based on thin films of organolead trihalide perovskites (OTPs) hold unprecedented promise for low-cost, high-efficiency photovoltaics (PVs) of the future. While PV performance parameters of PSCs, such as short circuit current, open circuit voltage, and maximum power, are always measured at the macroscopic scale, it is necessary to probe such photoresponses at the nanoscale to gain key insights into the fundamental PV mechanisms and their localized dependence on the OTP thin-film microstructure. Here we use photoconductive atomic force microscopy spectroscopy to map for the first time variations of PV performance at the nanoscale for planar PSCs based on hole-transport-layer free methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) thin films. These results reveal substantial variations in the photoresponse that correlate with thin-film microstructural features such as intragrain planar defects, grains, grain boundaries, and notably also grain-aggregates. The insights gained into such microstructure-localized PV mechanisms are essential for guiding microstructural tailoring of OTP films for improved PV performance in future PSCs.

16.
ACS Appl Mater Interfaces ; 8(3): 2232-7, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26726763

RESUMO

Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.77 and 2.05 eV, respectively) are considered as promising low-cost alternatives for application in tandem or multijunction photovoltaics (PVs). Here, we demonstrate that manipulating the crystallization behavior of (I, Br)-mixed halide perovskites in antisolvent bath is critical for the formation of smooth, dense thin films of these perovskites. Since the growth of perovskite grains from a precursor solution tends to be more rapid with increasing Br content, further enhancement in the nucleation rate becomes necessary for the effective decoupling of the nucleation and the crystal-growth stages in Br-rich perovskites. This is enabled by introducing simple stirring during antisolvent-bathing, which induces enhanced advection transport of the extracted precursor-solvent into the bath environment. Consequently, wide-bandgap planar PSCs fabricated using these high quality mixed-halide perovskite thin films, Br-rich MAPbIBr2, in particular, show enhanced PV performance.

17.
J Am Chem Soc ; 138(3): 750-3, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26730744

RESUMO

We demonstrate the feasibility of a nonsalt-based precursor pair--inorganic HPbI3 solid and organic CH3NH2 gas--for the deposition of uniform CH3NH3PbI3 perovskite thin films. The strong room-temperature solid-gas interaction between HPbI3 and CH3NH2 induces transformative evolution of ultrasmooth, full-coverage perovskite thin films at a rapid rate (in seconds) from nominally processed rough, partial-coverage HPbI3 thin films. The chemical origin of this behavior is elucidated via in situ experiments. Perovskite solar cells, fabricated using MAPbI3 thin films thus deposited, deliver power conversion efficiencies up to 18.2%, attesting to the high quality of the perovskite thin films deposited using this transformative process.

18.
Nanoscale ; 8(12): 6265-70, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26549434

RESUMO

The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (α-HC(NH2)2PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure α-HC(NH2)2PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%.

19.
ACS Appl Mater Interfaces ; 8(1): 854-61, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26690942

RESUMO

Perovskites based on organometal lead halides have attracted great deal of scientific attention recently in the context of solar cells and optoelectronic devices due to their unique and tunable electronic and optical properties. Herein, we show that the use of electrospray technique in conjunction with the antisolvent-solvent extraction leads to novel low-dimensional quantum structures (especially 2-D nanosheets) of CH3NH3PbI3- and CH3NH3PbBr3-based layered perovskites with unusual luminescence properties. We also show that the optical bandgaps and emission characteristics of these colloidal nanomaterials can be tuned over a broad range of visible spectral region by compositional tailoring of mixed-halide (I- and Br-based) perovskites.

20.
J Phys Chem Lett ; 6(23): 4827-39, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26560696

RESUMO

The use of organometal trihalide perovskites (OTPs) in perovskite solar cells (PSCs) is revolutionizing the field of photovoltaics, which is being led by advances in solution processing of OTP thin films. First, we look at fundamental phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution involved in the solution-processing of OTP thin films for PSCs from a materials-science perspective. Established scientific principles that govern some of these phenomena are invoked in the context of specific literature examples of solution-processed OTP thin films. Second, the nature and the unique characteristics of OTP thin-film microstructures themselves are discussed from a materials-science perspective. Finally, we discuss the challenges and opportunities in the characterization of OTP thin films for not only gaining a deep understanding of defects and microstructures but also elucidating classical and nonclassical phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution in these films. The overall goal is to have deterministic control over the solution-processing of tailored OTP thin films with desired morphologies and microstructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA