Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(19): 196402, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469580

RESUMO

Recent reports have identified new metaphases of VO_{2} with strain and/or doping, suggesting the structural phase transition and the metal-to-insulator transition might be decoupled. Using epitaxially strained VO_{2}/TiO_{2} (001) thin films, which display a bulklike abrupt metal-to-insulator transition and rutile to monoclinic transition structural phase transition, we employ x-ray standing waves combined with hard x-ray photoelectron spectroscopy to simultaneously measure the structural and electronic transitions. This x-ray standing waves study elegantly demonstrates the structural and electronic transitions occur concurrently within experimental limits (±1 K).

2.
Artigo em Inglês | MEDLINE | ID: mdl-32292024

RESUMO

We study the interplay between epitaxial strain, film thickness, and electric field in the creation, modification, and design of distinct ferroelastic structures in PbTiO3 thin films. Strain and thickness greatly affect the structures formed, providing a two-variable parameterization of the resulting self-assembly. Under applied electric fields, these strain-engineered ferroelastic structures are highly malleable, especially when a/c and a1/a2 superdomains coexist. To reconfigure the ferroelastic structures and achieve self-assembled nanoscale-ordered morphologies, pure ferroelectric switching of individual c-domains within the a/c superdomains is essential. The stability, however, of the electrically written ferroelastic structures is in most cases ephemeral; the speed of the relaxation process depends sensitively on strain and thickness. Only under low tensile strain-as is the case for PbTiO3 on GdScO3-and below a critical thickness do the electrically created a/c superdomain structures become stable for days or longer, making them relevant for reconfigurable nanoscale electronics or nonvolatile electromechanical applications.

3.
Nano Lett ; 19(11): 7901-7907, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596599

RESUMO

Achieving efficient spatial modulation of phonon transmission is an essential step on the path to phononic circuits using "phonon currents". With their intrinsic and reconfigurable interfaces, domain walls (DWs), ferroelectrics are alluring candidates to be harnessed as dynamic heat modulators. This paper reports the thermal conductivity of single-crystal PbTiO3 thin films over a wide variety of epitaxial-strain-engineered ferroelectric domain configurations. The phonon transport is proved to be strongly affected by the density and type of DWs, achieving a 61% reduction of the room-temperature thermal conductivity compared to the single-domain scenario. The thermal resistance across the ferroelectric DWs is obtained, revealing a very high value (≈5.0 × 10-9 K m2 W-1), comparable to grain boundaries in oxides, explaining the strong modulation of the thermal conductivity in PbTiO3. This low thermal conductance of the DWs is ascribed to the structural mismatch and polarization gradient found between the different types of domains in the PbTiO3 films, resulting in a structural inhomogeneity that extends several unit cells around the DWs. These findings demonstrate the potential of ferroelectric DWs as efficient regulators of heat flow in one single material, overcoming the complexity of multilayers systems and the uncontrolled distribution of grain boundaries, paving the way for applications in phononics.

4.
Nano Lett ; 19(6): 3663-3670, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046294

RESUMO

Spin-orbit torques (SOT) in thin film heterostructures originate from strong spin-orbit interactions (SOI) that, in the bulk, generate a spin current due either to extrinsic spin-dependent, skew, or/and side-jump scattering or to intrinsic Berry curvature in the conduction bands. While most SOT studies have focused on materials with heavy metal components, the oxide perovskite SrRuO3 has been predicted to have a pronounced Berry curvature. Through quantification of its spin current by the SOT exerted on an adjacent Co ferromagnetic layer, we determine that SrRuO3 has a strongly temperature ( T)-dependent spin Hall conductivity σ SH, increasing with the electrical conductivity, consistent with expected behavior of the intrinsic effect in the "dirty metal" regime. σ SH is very high at low T, e.g., σ SH > (ℏ/2 e)3 × 105 Ω-1 m-1 at 60 K, and is largely unaffected by the SrRuO3 ferromagnetic transition at T c ≈ 150 K, which agrees with a recent theoretical determination that the intrinsic spin Hall effect is magnetization independent. Below T c smaller nonstandard SOT components also develop associated with the magnetism of the oxide. Our results are consistent with the degree of RuO6 octahedral tilt being correlated with the strength of the SOI in this complex oxide, as predicted by recent theoretical work on strontium iridate. These results establish SrRuO3 as a very promising candidate material for implementing strong spintronics functionalities in oxide electronics.

5.
J Chem Phys ; 150(4): 041726, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709296

RESUMO

We report the electrocatalysis of the chlorine evolution reaction (CER) on well-defined RuO2(110) and IrO2(110) surfaces. RuO2 and IrO2 are known for their capabilities to catalyze the CER. Until now, the CER measurements have only been reported on well-defined RuO2 surfaces and only at high Cl- concentrations. We present the CER measurement and the role of Cl- at lower concentration on single-orientation RuO2(110) and IrO2(110) films. We find that RuO2(110) is two orders of magnitude more active than IrO2(110). Moreover, we observe the correlation between the CER activity and the Oad formation potential on RuO2 and IrO2, supporting the prior suggestion that the Oad is the active site for the CER. We further use the reaction order analysis to support the Volmer-Heyrovsky mechanism of the CER, which was previously suggested from the Tafel slope analysis. Our finding highlights the importance of the surface Oad species on oxides for the CER electrocatalysis and suggests the electrochemical formation of Clad on Oad (for example, Cl- + Oad ↔ OClad + e-) as the crucial step in the CER electrocatalysis.

6.
J Am Chem Soc ; 140(50): 17597-17605, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463402

RESUMO

We report the hydroxide (OHad) and oxide (Oad) experimental electroadsorption free energies, their dependences on pH, and their correlations to the oxygen evolution reaction (OER) electrocatalysis on RuO2(110) surface. The Sabatier principle predicts that catalyst is most active when the intermediate stabilization is moderate, not too strong such that the bound intermediate disrupts the subsequent catalytic cycle, nor too weak such that the surface is ineffective. For decades, researchers have used this concept to rationalize the activity trend of many OER electrocatalysts including RuO2, which is among the state-of-the-art OER catalysts. In this article, we report an experimental assessment of the Sabatier principle by comparing the oxygen electroadsorption energy to the OER electrocatalysis for the first time on RuO2. We find that the OHad and Oad electroadsorption energies on RuO2(110) depend on pH and obey the scaling relation. However, we did not observe a direct correlation between the OHad and Oad electroadsorption energies and the OER activity in the comparative analysis that includes both RuO2(110) and IrO2(110). Our result raises a question of whether the Sabatier principle can describe highly active electrocatalysts, where the kinetic aspects may influence the electrocatalysis more strongly than the electroadsorption energy, which captures only the thermodynamics of the intermediates and not yet kinetics.

7.
Nanotechnology ; 28(40): 405201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28836505

RESUMO

We report the results of finite element simulations of the ON state characteristic of VO2-based threshold switching devices and compare the results with experimental data. The model is based on thermally induced threshold switching (thermal runaway) and successfully reproduces the I-V characteristics showing the formation and growth of the conductive filament in the ON state. Furthermore, we compare the I-V characteristics for two VO2 films with different electrical conductivities in the insulating and metallic phases as well as those based on TaO x and NbO x functional layers.

8.
J Phys Condens Matter ; 29(18): 185601, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28362641

RESUMO

The standard treatment of quantum corrections to semiclassical electronic conduction assumes that charge carriers propagate many wavelengths between scattering events, and succeeds in explaining multiple phenomena (weak localization magnetoresistance (WLMR), universal conductance fluctuations, Aharonov-Bohm oscillations) observed in polycrystalline metals and doped semiconductors in various dimensionalities. We report apparent WLMR and conductance fluctuations in H x VO2, a poor metal (in violation of the Mott-Ioffe-Regel limit) stabilized by the suppression of the VO2 metal-insulator transition through atomic hydrogen doping. Epitaxial thin films, single-crystal nanobeams, and nanosheets show similar phenomenology, though the details of the apparent WLMR seem to depend on the combined effects of the strain environment and presumed doping level. Self-consistent quantitative analysis of the WLMR is challenging given this and the high resistivity of the material, since the quantitative expressions for WLMR are derived assuming good metallicity. These observations raise the issue of how to assess and analyze mesoscopic quantum effects in poor metals.

9.
Nature ; 537(7621): 523-7, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652564

RESUMO

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3-the geometric ferroelectric with the greatest known planar rumpling-we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially-from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

10.
ACS Appl Mater Interfaces ; 8(20): 12908-14, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27136956

RESUMO

DC and pulse voltage-induced metal-insulator transition (MIT) in epitaxial VO2 two terminal devices were measured at various stage temperatures. The power needed to switch the device to the ON-state decrease linearly with increasing stage temperature, which can be explained by the Joule heating effect. During transient voltage induced MIT measurement, the incubation time varied across 6 orders of magnitude. Both DC I-V characteristic and incubation times calculated from the electrothermal simulations show good agreement with measured values, indicating Joule heating effect is the cause of MIT with no evidence of electronic effects. The width of the metallic filament in the ON-state of the device was extracted and simulated within the thermal model.

11.
Nat Commun ; 6: 7812, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249212

RESUMO

Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

12.
Materials (Basel) ; 8(8): 5452-5466, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28793516

RESUMO

Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.

13.
Nano Lett ; 14(11): 6115-20, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25268467

RESUMO

We locally investigate the electronic transport through individual tunnel junctions containing a 10 nm thin film of vanadium dioxide (VO2) across its thermally induced phase transition. The insulator-to-metal phase transition in the VO2 film collapses the Hubbard gap (experimentally determined to be 0.4 ± 0.07 V), leading to several orders of magnitude change in tunnel conductance. We quantitatively evaluate underlying transport mechanisms via theoretical quantum mechanical transport calculations which show excellent agreement with the experimental results.

14.
Nano Lett ; 10(2): 597-602, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20039695

RESUMO

Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA