Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Front Plant Sci ; 10: 754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231415


The commercial quality of fruit is the result of a combination of internal (acidity, sugars, juice, etc.) and external characteristics (shape, size, color, visual defects, etc.). On citrus, the internal maturity of fruit is often reached prior and independently to their external maturity, inducing the use of degreening practices to artificially color fruit. However, for some sectors where degreening is not authorized, such as organic farming or up-market, it is important to understand the co-occurrence between fruit coloration and internal ripening, and its impact on fruit quality and harvesting management. Our study was based on a monitoring of the color and acidity of Protected Geographical Indication "Clémentine de Corse" orchards of producers in 2013 and 2014. Our results show that: (i) the dynamics of acidity drop during maturation are similar from one plot to another but staggered in time; (ii) fruit coloring occurs at different times during acidity drop; (iii) the synchronization between the coloring process and acidity drop determines both the quality of harvested fruit and the period during which orchards are harvestable, which we called the "harvestability window." This study sheds new light on the quality of citrus harvested without fruit degreening and leads to propose actions to anticipate internal maturity evolution according to the coloring and spreading of the harvest period. The fruit acidity model obtained in this study will be extended to a practical application tool to predict fruit acidity and quality for a better-controlled harvest management.

J Environ Sci (China) ; 40: 92-104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969549


Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or ß-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.

Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Cicloexenos/análise , Monitoramento Ambiental/métodos , França , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Gases/química , Limoneno , Região do Mediterrâneo , Monoterpenos/análise , Oxirredução , Smog/análise , Terpenos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Tempo (Meteorologia)
J Sci Food Agric ; 96(11): 3906-14, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26694637


BACKGROUND: The physiological roles of organic acids in fruit cells are not fully understood, especially in citrus, whereas the decline in titratable acidity during ripening shown by many citrus fruits is due to the utilization of citric acid. We induced carbohydrate depletion by removing source leaves at two key periods in mandarin development (early and full citric acid accumulation). Then, we assessed the resulting changes in the short term (within 48 h) and long term (several weeks until ripening). RESULTS: Control mature fruits were characterized by elevated fresh weight, large diameters and high quantities of malic acid, citric acid and sucrose. At the same stage, fruits subjected to early or late defoliation had higher glucose, fructose, citric acid concentrations and lower sucrose concentrations. They differed only in their malic acid concentrations, which were higher in early defoliation fruits and similar in late defoliation fruits when compared to control fruits. Finally, fruits subjected to late defoliation were characterized by high proline and γ-aminobutyric acid concentrations, and low fructose and glucose concentrations. CONCLUSION: We have shown that short- and long-term carbohydrate limitation modifies sugar and organic acid metabolism during mandarin fruit growth. © 2015 Society of Chemical Industry.

Ácido Cítrico/metabolismo , Citrus/crescimento & desenvolvimento , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Frutose/metabolismo , Frutas/crescimento & desenvolvimento , Glucose/metabolismo , Ácido Cítrico/análise , Citrus/química , Citrus/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Sacarose na Dieta/análise , Regulação para Baixo , França , Frutose/análise , Frutas/química , Frutas/metabolismo , Glucose/análise , Humanos , Malatos/análise , Malatos/metabolismo , Valor Nutritivo , Floema/crescimento & desenvolvimento , Floema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Componente Principal , Prolina/análise , Prolina/metabolismo , Fatores de Tempo , Regulação para Cima , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
J Agric Food Chem ; 54(21): 8335-9, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032048


Most of the studies on organic acids and sugars in citrus were performed during fruit maturation, and less is known before this stage of development. The aim of our study was to investigate acids and sugars in lemon, lime, and orange from fruit-set toward development. We chose to compare organic acid and sugar accumulation among acidic and acidless varieties within three species. We estimated the acidity by titrimetry and quantified the concentrations of seven organic acids and three sugars by reverse HPLC. During the first 50 days of development, quinic acid was the major organic acid whatever the variety. Afterward, citric acid predominated in acidic varieties, while in acidless, malic acid exceeded it. Fructose substituted citric acid in acidless and could be synthesized either from citric acid or directly from glucose. Our results provided the first complete report on sugar and organic acid accumulation during the early stages of fruit development in several citrus varieties.

Carboidratos/análise , Ácidos Carboxílicos/análise , Citrus/química , Frutas/química , Frutas/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/análise , Frutose/análise , Concentração de Íons de Hidrogênio , Malatos/análise , Ácido Quínico/análise