Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Inorg Chem ; 58(24): 16434-16444, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31749359

RESUMO

Accurate determination of the spin Hamiltonian parameters in transition-metal complexes with large zero-field splitting (ZFS) is an actual challenge in studying magnetic and spectroscopic properties of high-spin transition metal complexes. Recent critical papers have convincingly shown that previous determinations of these parameters, based only on the magnetic data, have low accuracy and reliability. A combination of X-band electron paramagnetic resonance (EPR) spectroscopy and SQUID magnetometry seems to be a more convincing and accurate approach. However, even in this case, the accuracy of the determination of the spin Hamiltonian parameters is strongly limited. In this work, we propose a purely spectroscopic approach, in which three complementary EPR spectroscopic techniques are used to unambiguously with high accuracy determine the spin Hamiltonian parameters for transition-metal complexes with S = 3/2. The applicability of this approach is demonstrated by analyzing the new quasi-octahedral high-spin Co(II) complex [Co(hfac)2(bpy)] (I). Along with the conventional X-band EPR spectroscopy, we also use such advanced techniques as multi-high-frequency EPR spectroscopy (MHF-EPR) and frequency-domain Fourier-transform THz-EPR (FD-FT THz-EPR). We demonstrate that the experimental data derived from the X-band and MHF-EPR EPR spectra allow determination of the g tensor (gx = 2.388, gy = 2.417, gz = 2.221) and the ZFS rhombicity parameter E/D = 0.158. The axial ZFS parameter D = 37.1 cm-1 is measured for I with the aid of FD-FT THZ-EPR spectroscopy, which is able to detect the high-energy EPR transition between the two Kramers doublets. CASSCF/NEVPT2 quantum-chemical calculations of magnetic parameters and magnetic direct current (dc) measurements are performed as well as testing options, and the results obtained in these ways are in good agreement with those derived using the proposed spectroscopic approach.

2.
Dalton Trans ; 46(23): 7540-7548, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28573307

RESUMO

We report a combined experimental characterization and theoretical modeling of the hexa-coordinated high-spin Co(ii) complex cis-[Co(hfac)2(H2O)2] (I). The magnetic static field (DC) data and EPR spectra (measurements were carried out on the powder samples of diluted samples cis-[Co0.02Zn0.98 (hfac)2(H2O)2]) were analyzed with the aid of the parametric Griffith Hamiltonian for the high-spin Co(ii) supported by the ab initio calculations of the crystal field (CF) parameters, g-factors and superexchange parameters between H-bonded Co(ii) ions in the neighboring molecules in a 1D network. This analysis suggests the presence of the easy axis of magnetic anisotropy and also shows the existence of a significant rhombic component. The detected frequency dependent (AC) susceptibility signal shows that complex I exhibits slow paramagnetic relaxation in the applied DC field belonging thus to the class of non-uniaxial field induced single ion magnets with a negative axial component of anisotropy. It is demonstrated that the main contributions to the relaxation come from the direct one-phonon process dominating at low temperatures, while the contribution of the two-phonon Raman process becomes important with increasing temperature.

3.
Inorg Chem ; 55(19): 9696-9706, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27632142

RESUMO

In this article we report the synthesis and structure of the new Co(II) complex Et4N[CoII(hfac)3] (I) (hfac = hexafluoroacetylacetonate) exhibiting single-ion magnet (SIM) behavior. The performed analysis of the magnetic characteristics based on the complementary experimental techniques such as static and dynamic magnetic measurements, electron paramagnetic resonance spectroscopy in conjunction with the theoretical modeling (parametric Hamiltonian and ab initio calculations) demonstrates that the SIM properties of I arise from the nonuniaxial magnetic anisotropy with strong positive axial and significant rhombic contributions.

4.
Inorg Chem ; 55(7): 3566-75, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26974224

RESUMO

In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

5.
Chemistry ; 21(29): 10302-5, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26073883

RESUMO

The ligand-centered radical complex [(CoTPMA)2 -µ-bmtz(.-) ](O3 SCF3 )3 ⋅CH3 CN (bmtz=3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA=tris-(2-pyridylmethyl)amine) has been synthesized from the neutral bmtz precursor. Single-crystal X-ray diffraction studies have confirmed the presence of the ligand-centered radical. The Co(II) complex exhibits slow paramagnetic relaxation in an applied DC field with a barrier to spin reversal of 39 K. This behavior is a result of strong antiferromagnetic metal-radical coupling combined with positive axial and strong rhombic anisotropic contributions from the Co(II) ions.

6.
J Chem Theory Comput ; 1(4): 668-73, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26641689

RESUMO

The aim of this communication is to probe the possibility of increasing the barrier for reversal of magnetization in the family of new cyano-bridged pentanuclear Mn(III)2Mn(II)3 clusters in which single molecule magnet behavior has been recently discovered. In this context, we analyze the global magnetic anisotropy arising from the unquenched orbital angular momenta of ground terms (3)T1(t2(4)) of the two apical Mn(III) ions. The model takes into account the trigonal component of the crystal field, spin-orbit interaction in (3)T1(t2(4)), and an isotropic exchange interaction between Mn(III) and Mn(II) ions. The height of the barrier is shown to be sensitive to the change of the trigonal field stabilizing orbital doublet (3)E, which carries the first-order orbital magnetic contribution and enhances with an increase of the trigonal field. This result is expected to be useful for the more rational design of new cyano-bridged SMMs with high blocking temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA