Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
2.
Am J Hum Genet ; 105(2): 334-350, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374203

RESUMO

Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.

3.
Nature ; 572(7769): 323-328, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31367044

RESUMO

Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.

4.
Nat Rev Genet ; 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455890

RESUMO

Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.

5.
Eur J Hum Genet ; 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358956

RESUMO

It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the genetic variant burden and genotype-phenotype correlations in four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of >400×. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n = 15), ganglioglioma (n = 16), dysembryoplastic neuroepithelial tumors (n = 8), and focal cortical dysplasia type II (n = 15). Peripheral blood (n = 12) or surgical tissue samples histopathologically classified as lesion-free (n = 42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383×. The highest number of pathogenic/likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for the genetic variant burden across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well-characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes.

6.
J Am Heart Assoc ; 8(13): e012415, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31256696

RESUMO

Background We asked whether, after excluding familial hypercholesterolemia, individuals with high low-density lipoprotein cholesterol ( LDL -C) or triacylglyceride levels and a family history of the same hyperlipidemia have greater coronary artery disease risk or different lipidomic profiles compared with population-based hyperlipidemias. Methods and Results We determined incident coronary artery disease risk for 755 members of 66 hyperlipidemic families (≥2 first-degree relatives with similar hyperlipidemia) and 19 644 Finnish FINRISK population study participants. We quantified 151 circulating lipid species from 550 members of 73 hyperlipidemic families and 897 FINRISK participants using mass spectrometric shotgun lipidomics. Familial hypercholesterolemia was excluded using functional LDL receptor testing and genotyping. Hyperlipidemias ( LDL -C or triacylglycerides >90th population percentile) associated with increased coronary artery disease risk in meta-analysis of the hyperlipidemic families and the population cohort (high LDL -C: hazard ratio, 1.74 [95% CI, 1.48-2.04]; high triacylglycerides: hazard ratio, 1.38 [95% CI, 1.09-1.74]). Risk estimates were similar in the family and population cohorts also after adjusting for lipid-lowering medication. In lipidomic profiling, high LDL -C associated with 108 lipid species, and high triacylglycerides associated with 131 lipid species in either cohort (at 5% false discovery rate; P-value range 0.038-2.3×10-56). Lipidomic profiles were highly similar for hyperlipidemic individuals in the families and the population ( LDL -C: r=0.80; triacylglycerides: r=0.96; no lipid species deviated between the cohorts). Conclusions Hyperlipidemias with family history conferred similar coronary artery disease risk as population-based hyperlipidemias. We identified distinct lipidomic profiles associated with high LDL -C and triacylglycerides. Lipidomic profiles were similar between hyperlipidemias with family history and population-ascertained hyperlipidemias, providing evidence of similar and overlapping underlying mechanisms.

7.
Genet Med ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31239556

RESUMO

PURPOSE: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). METHODS: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. RESULTS: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. CONCLUSION: We significantly broaden the mutational and clinical spectrum of CTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.

8.
Am J Hum Genet ; 104(6): 1169-1181, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155286

RESUMO

Polygenic scores (PSs) are becoming a useful tool to identify individuals with high genetic risk for complex diseases, and several projects are currently testing their utility for translational applications. It is also tempting to use PSs to assess whether genetic variation can explain a part of the geographic distribution of a phenotype. However, it is not well known how the population genetic properties of the training and target samples affect the geographic distribution of PSs. Here, we evaluate geographic differences, and related biases, of PSs in Finland in a geographically well-defined sample of 2,376 individuals from the National FINRISK study. First, we detect geographic differences in PSs for coronary artery disease (CAD), rheumatoid arthritis, schizophrenia, waist-hip ratio (WHR), body-mass index (BMI), and height, but not for Crohn disease or ulcerative colitis. Second, we use height as a model trait to thoroughly assess the possible population genetic biases in PSs and apply similar approaches to the other phenotypes. Most importantly, we detect suspiciously large accumulations of geographic differences for CAD, WHR, BMI, and height, suggesting bias arising from the population's genetic structure rather than from a direct genotype-phenotype association. This work demonstrates how sensitive the geographic patterns of current PSs are for small biases even within relatively homogeneous populations and provides simple tools to identify such biases. A thorough understanding of the effects of population genetic structure on PSs is essential for translational applications of PSs.

9.
Bioinformatics ; 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31086968

RESUMO

MOTIVATION: The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. RESULTS: We present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. AVAILABILITY AND IMPLEMENTATION: http://vsranker.broadinstitute.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

11.
Genet Med ; 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30940925

RESUMO

PURPOSE: A new syndrome with hypotonia, intellectual disability, and eye abnormalities (HIDEA) was previously described in a large consanguineous family. Linkage analysis identified the recessive disease locus, and genome sequencing yielded three candidate genes with potentially pathogenic biallelic variants: transketolase (TKT), transmembrane prolyl 4-hydroxylase (P4HTM), and ubiquitin specific peptidase 4 (USP4). However, the causative gene remained elusive. METHODS: International collaboration and exome sequencing were used to identify new patients with HIDEA and biallelic, potentially pathogenic, P4HTM variants. Segregation analysis was performed using Sanger sequencing. P4H-TM wild-type and variant constructs without the transmembrane region were overexpressed in insect cells and analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot. RESULTS: Five different homozygous or compound heterozygous pathogenic P4HTM gene variants were identified in six new and six previously published patients presenting with HIDEA. Hypoventilation, obstructive and central sleep apnea, and dysautonomia were identified as novel features associated with the phenotype. Characterization of three of the P4H-TM variants demonstrated yielding insoluble protein products and, thus, loss-of-function. CONCLUSIONS: Biallelic loss-of-function P4HTM variants were shown to cause HIDEA syndrome. Our findings enable diagnosis of the condition, and highlight the importance of assessing the need for noninvasive ventilatory support in patients.

13.
Nat Commun ; 10(1): 1252, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890702

RESUMO

Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.


Assuntos
Aterosclerose/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência , Doença de Hodgkin/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Aterosclerose/patologia , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Feminino , Finlândia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Hematopoese/genética , Doença de Hodgkin/sangue , Doença de Hodgkin/patologia , Humanos , Masculino , Fenótipo , Cultura Primária de Células , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento Completo do Genoma
14.
J Neurotrauma ; 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30848161

RESUMO

The mortality of traumatic brain injury (TBI) has been largely static despite advances in monitoring and imaging techniques. Substantial variance exists in outcome, not fully accounted for by baseline characteristics or injury severity, and genetic factors likely play a role in this variance. The aims of this systematic review were to examine the evidence for a link between the apolipoprotein E4 (APOE4) polymorphism and TBI outcomes and where possible, to quantify the effect size via meta-analysis. We searched EMBASE, MEDLINE, CINAHL, and gray literature in December 2017. We included studies of APOE genotype in relation to functional adult TBI outcomes. Methodological quality was assessed using the Quality in Prognostic Studies Risk of Bias Assessment Instrument and the prognostic studies adaptation of the Grading of Recommendations Assessment, Development and Evaluation tool. In addition, we contacted investigators and included an additional 160 patients whose data had not been made available for previous analyses, giving a total sample size of 2593 patients. Meta-analysis demonstrated higher odds of a favorable outcome following TBI in those not possessing an ApoE ɛ4 allele compared with ɛ4 carriers and homozygotes (odds ratio 1.39, 95% confidence interval 1.05 to 1.84; p = 0.02). The influence of APOE4 on neuropsychological functioning following TBI remained uncertain, with multiple conflicting studies. We conclude that the ApoE ɛ4 allele confers a small risk of poor outcome following TBI, with analysis by TBI severity not possible based on the currently available published data. Further research into the long-term neuropsychological impact and risk of dementia is warranted.

15.
Epilepsia ; 60(4): 689-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30866059

RESUMO

OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.

16.
Eur J Hum Genet ; 27(8): 1235-1243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30914828

RESUMO

Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called "thin" lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.(Arg170His), was of Finnish ancestry. Here we report on the phenotypic variability associated for this potential CRADD founder variant in 22 Finnish individuals. Exome sequencing was used to identify candidate genes in Finnish patients presenting with ID. Targeted Sanger sequencing and restriction enzyme analysis were applied to screen for the c.509G>A CRADD variant in cohorts from Finland. Detailed phenotyping and genealogical studies were performed. Twenty two patients were identified with the c.509G>A p.(Arg170His) homozygous variant in CRADD. The majority of the ancestors originated from Northeastern Finland indicating a founder effect. The hallmark of the disease is frontotemporal predominant pachygyria with mild cortical thickening. All patients show ID of variable severity. Aggressive behavior was found in nearly half of the patients, EEG abnormalities in five patients and megalencephaly in three patients. This study provides detailed data about the phenotypic spectrum of patients with lissencephaly due to a CRADD variant that affects function. High inter- and intrafamilial phenotypic heterogeneity was identified in patients with pachygyria caused by the homozygous CRADD founder variant. The phenotype variability suggests that additional genetic and/or environmental factors play a role in the clinical presentation. Since frontotemporal pachygyria is the hallmark of the disease, brain imaging studies are essential to support the molecular diagnosis for individuals with ID and a CRADD variant.

17.
Nat Genet ; 51(3): 431-444, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804558

RESUMO

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Dinamarca , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Herança Multifatorial/genética , Fenótipo , Fatores de Risco
18.
Nat Commun ; 10(1): 410, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679432

RESUMO

The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.


Assuntos
Variações do Número de Cópias de DNA/genética , Variação Genética/genética , Genoma Humano/genética , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Proteína Adaptadora de Sinalização CRADD/genética , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Estudos de Coortes , Exoma , Feminino , Finlândia/epidemiologia , Estudos de Associação Genética , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Geografia , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Herança Multifatorial , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Patologia Molecular , Prevalência , Sequenciamento Completo do Exoma
19.
Epilepsia ; 59(11): 2145-2152, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30341947

RESUMO

OBJECTIVE: Increasing availability of surgically resected brain tissue from patients with focal epilepsy and focal cortical dysplasia or low-grade glioneuronal tumors has fostered large-scale genetic examination. However, assessment of pathogenicity of germ line and somatic variants remains difficult. Here, we present a state-of-the-art evaluation of reported genes and variants associated with epileptic brain lesions. METHODS: We critically reevaluated the pathogenicity for all neuropathology-associated variants reported to date in the PubMed and ClinVar databases, including 101 neuropathology-associated missense variants encompassing 11 disease-related genes. We assessed gene variant tolerance and classified all identified missense variants according to guidelines from the American College of Medical Genetics and Genomics (ACMG). We further extended the bioinformatic variant prediction by introducing a novel gene-specific deleteriousness ranking for prediction scores. RESULTS: Application of ACMG guidelines and in silico gene variant tolerance analysis classified only seven of 11 genes to be likely disease-associated according to the reported disease mechanism, whereas 61 (60.4%) of 101 variants of those genes were classified as of uncertain significance, 37 (36.6%) as being likely pathogenic, and 3 (3%) as being pathogenic. SIGNIFICANCE: We concluded that the majority of neuropathology-associated variants reported to date do not have enough evidence to be classified as pathogenic. Interpretation of lesion-associated variants remains challenging, and application of current ACMG guidelines is recommended for interpretation and prediction.

20.
BMJ Open ; 8(10): e022752, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30327404

RESUMO

OBJECTIVE: To evaluate if obstructive sleep apnoea (OSA) modifies the risk of coronary heart disease, type 2 diabetes (T2D) and diabetic complications in a gender-specific fashion. DESIGN AND SETTING: A longitudinal population-based study with up to 25-year follow-up data on 36 963 individuals (>500 000 person years) from three population-based cohorts: the FINRISK study, the Health 2000 Cohort Study and the Botnia Study. MAIN OUTCOME MEASURES: Incident coronary heart disease, diabetic kidney disease, T2D and all-cause mortality from the Finnish National Hospital Discharge Register and the Finnish National Causes-of-Death Register. RESULTS: After adjustments for age, sex, region, high-density lipoprotein (HDL) and total cholesterol, current cigarette smoking, body mass index, hypertension, T2D baseline and family history of stroke or myocardial infarction, OSA increased the risk for coronary heart disease (HR=1.36, p=0.0014, 95% CI 1.12 to 1.64), particularly in women (HR=2.01, 95% CI 1.31 to 3.07, p=0.0012). T2D clustered with OSA independently of obesity (HR=1.48, 95% CI 1.26 to 1.73, p=9.11×[Formula: see text]). The risk of diabetic kidney disease increased 1.75-fold in patients with OSA (95% CI 1.13 to 2.71, p=0.013). OSA increased the risk for coronary heart disease similarly among patients with T2D and in general population (HR=1.36). All-cause mortality was increased by OSA in diabetic individuals (HR=1.35, 95% CI 1.06 to 1.71, p=0.016). CONCLUSION: OSA is an independent risk factor for coronary heart disease, T2D and diabetic kidney disease. This effect is more pronounced even in women, who until now have received less attention in diagnosis and treatment of OSA than men.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA