Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Int Immunopharmacol ; 94: 107503, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33647825

RESUMO

Our previous studies have implicated Caspase-1 signaling in driving the proinflammatory state of acute graft versus host disease (aGVHD). Therefore, we aimed to elucidate the mechanism of Caspase-1 in in murine models of aGVHD through specific inhibition of its activity with the decoy peptide Ac-YVAD-CMK. We transplanted bone marrow from donor C57BL/6 (H-2b) mice into recipient BALB/c (H-2Kd) mice and randomized the recipients into the following treatment cohorts: (1) allogeneic hematopoietic stem cell transplantation and splenic cell infusion control (PBS group); (2) low dose Ac-YVAD-CMK (AC low group); (3) and high dose Ac-YVAD-CMK (AC high group). Indeed, we observed that Caspase-1 inhibition by Ac-YVAD-CMK ameliorated pathological damage and inflammation in the liver, lungs, and colon elicited by aGVHD. This was associated with reduced mortality secondary to aGVHD. Mechanistically, we found that Caspase-1 inhibition modulated donor T cell expansion, restored the balance of Th1/Th17/Treg subsets, and markedly decreased serum levels and aGVHD target organ mRNA expression of IL-1ß, IL-18, and HMGB1. Thus, we demonstrate that inhibition of Caspase-1 by Ac-YVAD-CMK mitigates murine aGVHD by regulating Th1/Th17/Treg balance and attenuating its characteristic proinflammatory state.

2.
Arthroscopy ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539975

RESUMO

PURPOSE: This study aimed to evaluate the clinical outcomes for arthroscopic treatment for acute posterior cruciate ligament (PCL) avulsion fractures with a suspensory technique. METHODS: A total of 30 acute (<3 weeks) isolated PCL tibial avulsion fractures were fixed under arthroscopy using the Endobutton device. After arthroscopic exploration and reduction of the bony fragment, a single tibia tunnel was established; then, the titanium button was guided through the tunnel and flipped onto the bony fragment to stabilize the fracture. Finally, an interference screw was squeezed into the tunnel to fix the end of the loop. Clinical and functional outcomes were evaluated using the Lysholm score, the 2000 International Knee Documentation Committee (IKDC) subjective score, and the IKDC examination form. RESULTS: The mean follow-up time was 32 months (range, 24-47 months). The mean age of the patients was 41 years (range, 21-65 years). All patients achieved bony union and regained satisfactory knee function. No popliteal neurovascular complications or implant loosening was observed. The mean Lysholm score increased from 20.9 ± 7.0 before operation to 97.1 ± 2.7 at the final follow-up. The mean 2000 IKDC subjective score improved from 17.2 ± 5.2 to 96.8 ± 2.6. The IKDC examination grade also improved significantly. CONCLUSIONS: This suspensory technique under arthroscopy is a simple, safe, and minimally invasive treatment for PCL tibial avulsion fracture. Suspensory fixation resulted in satisfactory outcomes, including good knee stability and fracture union; this technique can be a reliable alternative to various surgical methods. LEVEL OF EVIDENCE: Level IV, therapeutic study.

4.
Biomed Pharmacother ; 137: 111323, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524790

RESUMO

BACKGROUND: Iohexol is a typical iodinated radiocontrast medium and widely used in clinical angiography. Hypersensitivity reactions induced by iohexol are common side effects known to increase the risk for patients. Iodine is the main functional group of iohexol, and it can induce delayed anaphylaxis. However, iohexol also induces immediate-type allergies, but the underlying mechanism is still not clear. MRGPRX2 is a key receptor present on mast cells, which mediates pseudo-allergic reactions induced by various drugs. METHODS: We aimed to verify the relationship between iohexol-induced anaphylactic reactions and MRGPRX2. MRGPRX2-mediated pseudo-allergic reactions induced by iohexol were investigated in vivo and in vitro using a mouse model of local and systemic anaphylaxis and mast cell degranulation assays, respectively. RESULTS: Iohexol caused pseudo-allergic reactions in wild-type (WT) mice by activating mast cells to release histamine and cytokines. However, it did not induce a similar phenomenon in KitW-sh/W-sh (MUT) mice. Iohexol stimulated intracellular calcium ion (Ca2+) influx in MRGPRX2-HEK293, MrgprB2-HEK293, and LAD2 cells but not in NC-HEK293 cells. After knockdown of MRGPRX2 expression in LAD2 cells, the degree of iohexol-induced degranulation was reduced. In addition, after structural modification of iohexol by removal of iodine, a reduction in iohexol-induced effects, such as local and systemic anaphylaxis in mice and degranulation of LAD2 cells, could be observed. Iohexol was shown to induce immediate-type pseudo-allergic reactions via MRGPRX2, which was dependent on the presence of iodine. CONCLUSIONS: Conclusively, inhibition of MRGPRX2-mediated mast cell degranulation and cytokine release is important to prevent iohexol-induced immediate-type pseudo-allergic reactions.

5.
Mol Neurobiol ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459966

RESUMO

Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.2 as a translational inhibitor of mRNA. Specifically, during SNI, Sig-1Rs translocate from ER to the nuclear envelope via a trafficking protein Sec61ß. At the nucleus, the Sig-1R interacts with cFos and binds to the promoter of 4E-BP1, leading to an upregulation of 4E-BP1 that binds and prevents eIF4E from initiating the mRNA translation for Cav2.2. Interestingly, in Sig-1R knockout HEK cells, Cav2.2 is upregulated. In accordance with those findings, we find that intra-DRG injection of Sig-1R agonist (+)pentazocine increases frequency of action potentials via regulation of voltage-gated Ca2+ channels. Conversely, intra-DRG injection of Sig-1R antagonist BD1047 attenuates neuropathic pain. Hence, we discover that the Sig-1R chaperone causes neuropathic pain indirectly as a translational inhibitor.

6.
Ecotoxicol Environ Saf ; 210: 111871, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422840

RESUMO

AIM: Ambient fine particulate matter (PM2.5) consists of various components, and their respective contributions to the toxicity of PM2.5 remains to be determined. To provide specific recommendations for preventing adverse effects due to PM2.5 pollution, we determined whether the induction of pulmonary inflammation, the putative pathogenesis for the morbidity and mortality due to PM2.5 exposure, was fractioned through solubility-dependent fractioning. METHODS: In the present study, the water and heptane solubilities-dependent serial fractioning of diesel exhaust particulate matter (DEP), a prominent source of urban PM2.5 pollution, was performed. The pro-inflammatory actions of these resultant fractions were then determined using both an intratracheal instillation mouse model and cultured BEAS-2B cells, a human bronchial epithelial cell line. RESULTS: Instillation of the water-insoluble, but not -soluble fraction elicited significant pulmonary inflammatory and acute phase responses, comparable to those induced by instillation of DEP. The water-insoluble fraction was further fractioned using heptane, a polar organic solvent, and instillation of heptane-insoluble, but not -soluble fraction elicited significant pulmonary inflammation and acute phase responses. Furthermore, we showed that DEP and water-insoluble DEP, but not water-soluble DEP, activated pro-inflammatory signaling in cultured BEAS-2B cells, ruling out the possibility that the solubility impacts the in vivo distribution and thus the pulmonary inflammatory response.


Assuntos
Reação de Fase Aguda/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Reação de Fase Aguda/patologia , Animais , Brônquios/citologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/patologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL
7.
Int J Mol Med ; 47(2): 688-698, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33416124

RESUMO

Ligamentum flavum hypertrophy (LFH) is an important cause of spinal canal stenosis and posterior longitudinal ligament ossification. Although a number of studies have focused on the mechanisms responsible for LFH, the cellular mechanisms remain poorly understood. The aim of the present study was to investigate the roles of differentially expressed genes (DEGs) in LFH, elucidate the mechanisms responsible for LFH and provide a potential therapeutic target for further studies. The GSE113212 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The microarray data were analyzed and DEGs were obtained. Bioinformatics methods, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein­protein interaction (PPI) network analyses were used to obtain the key genes and signaling pathways. In addition, cells derived from hypertrophied ligamentum flavum were cultured, and the key genes and signaling pathways in ligamentum cells were identified through in vitro cell biology and molecular biology experiments. A total of 2,123 genes were screened as DEGs. Among these DEGs, 1,384 genes were upregulated and 739 genes were downregulated. The KEGG pathway analysis revealed that the DEGs were mainly enriched in the PI3K/AKT signaling pathway, and the PPI network analysis screened A disintegrin and metalloproteinase 10 (ADAM10) as a key gene. In vitro experimental verification revealed that ADAM10 promoted the proliferation of ligamentum flavum cells and led to the hypertrophy of the ligamentum by activating the PI3K/AKT pathway. On the whole, the in vitro experimental results suggested that ADAM10 promoted the proliferation of ligamentum flavum cells by activating the PI3K/AKT pathway, which may represent a pathogenic mechanism of LFH. The findings of the present study may provide a basis and direction for further studies on the cellular mechanisms of LFH and present a potential novel therapeutic target and clinical approach.

8.
J Nanosci Nanotechnol ; 21(2): 909-913, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183423

RESUMO

In recent years, nanotechnology has made great progress in the development and application of tumor detection, diagnosis, and treatment, and eventually formed a "tumor nanomedicine." The emerging field of "materials." Nanoparticles have attracted much attention because they can overcome physiological barriers, effectively deliver hydrophobic drugs, and specifically target tumor tissues. At present, nanomedicines mainly include lipid nanoparticles, polymer nanoparticles granules, gold nanoparticles, magnetic nanoparticles, mesoporous silica, and other dosage forms. The use of nanomaterials as carriers in the treatment of lung cancer has unique advantages in achieving targeted drug delivery, slow-release drugs, and improvement of poorly soluble drugs and peptide drugs show obvious advantages in terms of bioavailability and reduction of adverse reactions, and have broad research and development prospects. This paper reports a new type of self-assembled Ptx-SA drug-loaded nanometers based on the carrier-free concept fiber, and it was found that the drug-loaded fiber has better cellophilicity, anti-tumor effect in vitro and in vivo than naked drug, and may be mediated by regulating the expression of related proteins. Therefore, the paclitaxel-loaded nano drug delivery system serves as a new type of nano preparation for treating lung cancer is worth further research.

9.
Life Sci ; 265: 118849, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278390

RESUMO

AIMS: Interleukin-22 (IL-22) promotes thymus recovery and improves T-cell recovery in preclinical allogeneic hematopoietic cell transplant models. However, the correlation between IL-22 and thymus recovery is unknown in human transplant. MATERIALS AND METHODS: In this study, plasma IL-22 levels of transplanted humans were analyzed peri-transplant. Thymic output was assessed by detecting blood signal joint T-cell receptor excision circles (TRECs). Flow cytometry was applied to measure T-cell subsets. KEY FINDINGS: Plasma IL-22 level positively correlated with blood TRECs level at days 14 and 28 posttransplant. Multiple linear regression analysis showed plasma IL-22 level, occurrence of acute graft-versus-host disease (aGVHD) and age were significantly associated with blood TRECs level at day 28 after allotransplant. An increase of plasma IL-22 level during day 14 and day 28 correlated with faster recovery of blood TRECs and naïve T-cell levels in allotransplant recipients. Recipients with high TRECs levels at day 28 had lower incidence of aGVHD comparing with those who with low TRECs levels according to a median split of their TRECs levels, an effect also seen in the high IL-22 level and low IL-22 level cohorts. Other factors such as age and infection had impacts on plasma IL-22 level in allotransplants. SIGNIFICANCE: Our findings suggest that dynamic change of plasma IL-22 level is an indicator of thymic output and occurrence of aGVHD. Monitoring plasma IL-22 level might help to assess recovery of thymus function in human allotransplants.

10.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(11): 1651-1655, 2020 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-33243730

RESUMO

OBJECTIVE: To study the expression of BIRC6 in renal cancer tissues and investigate the effect of BIRC6 silencing on apoptosis and autophagy of 786-O cells. METHODS: Twenty surgical specimens of renal cancer tissues and adjacent renal tissues were collected from Meizhou People's Hospital between February, 2016 and December, 2018 for detection of BIRC6 protein expression using immunohistochemistry. Renal cancer 786-O cells were transfected with a control small interfering RNA (siRNA) or BIRC6 siRNA via lipofectamine 2000, and the changes in cell proliferation and apoptosis following 5-FU treatment were assessed using CCK8 assay and flow cytometry; the expressions of autophagy-related proteins Beclin and LC3A/B were detected by Western blotting. RESULTS: The expression of BIRC6 protein was significantly higher in renal cancer tissues than in the adjacent renal tissues. Western blotting showed that siRNA-mediated silencing of BIRC6 significantly lowered the expression of BIRC6 in 786-O cells. In the cells with BIRC6 silencing, treatment with 12.5, 25, 50, 100 and 200 µg/mL 5-FU resulted in significantly higher proliferation inhibition rates than in the cells transfected with the control siRNA (P < 0.01). BIRC6 silencing also significantly increased the apoptosis rate of 786-O cells following 5-FU treatment (P < 0.01). The results of Western blotting showed that BIRC6 silencing significantly lowered the protein expressions of Beclin and LC3A/B in 786-O cells. CONCLUSIONS: Interference of BIRC6 mediated by siRNA can inhibit autophagy and promote 5-FU-induced apoptosis to enhance the sensitivity of 786-O cells to 5-FU.

11.
Front Cell Dev Biol ; 8: 528155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195183

RESUMO

Prostate cancer is the most common malignant tumor of the urinary system. The mechanisms of the initiation and progression of prostate cancer have not been fully elucidated. Increasing evidence suggests that circular RNAs (circRNAs) are involved in cancer pathogenesis. In this study, we aimed to identify differentially expressed circRNAs in prostate cancer tissues and explored the role of circRNAs in the pathogenesis of prostate cancer. By screening a circRNA microarray assay, we found that circ_0088233 was upregulated in prostate cancer tissues compared to adjacent normal tissues, and this upregulation can be verified in 46 pairs of prostate cancer and adjacent normal tissues examined using quantitative reverse transcription-PCR. The level of circ_0088233 correlated with the TNM stage. Knockdown of circ_0088233 reduced cell proliferation, migration, invasion, and induced G1 phase arrest and apoptosis. In addition, miR-185-3p was identified as the downstream target of circ_0088233 using luciferase reporter assays and a biotinylated circ_0088233 probe pull-down assay. The miR-185-3p level showed a negative correlation with the circ_0088233 level in prostate cancer tissues. Overexpression of circ_0088233 blocked the effects of miR-185-3p on cell proliferation, migration, invasion, cell cycle, and apoptosis. In conclusion, circ_0088233 may function as an oncogene and play an oncogenic role by sponging hsa-miR-185-3p. This study increases the understanding of circRNAs in the progression of prostate cancer. These results implicate circ_0088233 as a potential therapeutic target for prostate cancer.

12.
Oncol Lett ; 20(6): 300, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33101494

RESUMO

Activation of T lymphocytes is the initiating factor of the occurrence of acute graft-versus-host disease (aGVHD), and cytotoxic T lymphocyte antigen-4 (CTLA-4) is the inhibitory receptor for activating T cells. T cell immune response cDNA 7 (TIRC7) is considered an upstream regulator of CTLA-4; however, little is understood regarding the effects of TIRC7 on the regulation of CTLA-4 in aGVHD. The purpose of the present study was to evaluate the regulatory effects of TIRC7 on aGVHD, mainly in the pathology. Recipient mice were exposed to a preconditioning dose of 7.5 Gy irradiation on the day of the transplantation and were divided into the following groups: Blank control group, bone marrow transplantation control group, total body irradiation group, mild-moderate aGVHD group and severe aGVHD group. According to the different administration of CTLA-4 and TIRC7 monoclonal antibodies, the mild-moderate and severe aGVHD groups were randomly divided into the hematopoietic stem cell transplantation (HSCT) and HSCT + CTLA-4/TIRC7 groups. Recipient mice were sacrificed at different time points post-HSCT for histopathological analysis by hematoxylin and eosin staining. Compared with the control and other experimental groups, the mice in the combined CTLA-4 and TIRC7 group exhibited ameliorated pathological injury, and lower pathology scores of the liver, lung and intestine. These data revealed that intraperitoneal injection of anti-TIRC7 and/or anti-CTLA-4 monoclonal antibody into mice could effectively alleviate the severity of aGVHD.

13.
Adv Colloid Interface Sci ; 285: 102266, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33011571

RESUMO

Clay is one of the most important mineral components in geological formations, and it is widely used in many industrial applications. One clay property, which is of key importance in many areas, e.g. mineral processing, agriculture, fundamental geologic understanding, hydrology, oil/water separation and multi-phase fluid flow, is clay wettability. However, clay wettability is a complex parameter which is determined by clay surface chemistry, in-situ aqueous and non-aqueous fluid chemistries, and geo-thermal conditions. Thus, a systematic review of published results on the wettability of six different clay minerals (kaolinite, montmorillonite, illite, mica, talc and pyrophyllite) is provided here, spanning from experimental studies to molecular dynamics simulations. This is integrated with a critical discussion to elucidate the origin of significant inconsistencies in the reported data. Finally, a range of conclusions is clearly established and a future outlook is given. This review will thus advance the understanding of clay wettability and provide guidance for the various applications discussed.

14.
Eur J Neurosci ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022764

RESUMO

Peripheral nerve injury (PNI) is a common and incurable disease in the clinic, but the effects of available treatments are still not satisfactory. Therefore, it is necessary to explore new treatment methods. To explore the effect and mechanism of melatonin in peripheral nerve regeneration, we administered melatonin to mice with PNI by intraperitoneal injection. We applied microarray analysis to detect differentially expressed genes of mice with sciatic nerve injury after melatonin application. Then, we conducted gene ontology and protein-protein interactions to screen out the key genes related to peripheral nerve regeneration. Cell biology and molecular biology experiments were performed in Schwann cells in vitro to verify the key genes identified by microarray analysis. Our results showed that a total of 598 differentially expressed genes were detected after melatonin subcutaneously injecting into mice with sciatic nerve injury. Bioinformatics analysis showed that Shh may be the key gene for the promotion of peripheral nerve regeneration by melatonin. In vitro, the proliferation and migration abilities of schwann cells in the melatonin group were significantly higher than those of Schwann cells in the control group; while after treating with both melatonin and luzindole (a Shh signalling pathway inhibitor), the proliferation and migration abilities of Schwann cells decreased compared with the melatonin group. Our study suggests that melatonin might improve the proliferation and migration of Schwann cells via the Shh signalling pathway after PNI, thus promoting peripheral nerve regeneration. Our study provides a new approach and target for the clinical treatment of PNI.

15.
Int J Lab Hematol ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112046

RESUMO

INTRODUCTION: Anti-CD19 chimeric antigen receptor (CAR) -T cells, which recognize and kill both B lymphoblasts and normal B cells, result in B cell aplasia and humoral immunodeficiency. However, there were only a few detailed reports on the profile of immune reconstitution after anti-CD19 CAR-T cell therapy. METHODS: Thirty nine patients with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (ALL) receiving anti-CD19 CAR-T cell therapy were enrolled. Subjects died, relapsed, received other treatment, or lost to follow-up within 60 days post-infusion were excluded. 21 patients were finally selected. Laboratory and clinical data were collected for analysis of immune reconstitution. RESULTS: CD8+ cells were the first to recover with a median time on day 21(7-87), followed by CD16/CD56+ cells on day 28(14-87), and finally CD4+ cells with only 5(23.81%) patients recovered within 60 days post-infusion. CD4/CD8 ratio was inverted, sustaining for at least 1 year. B cell aplasia occurred in all patients and CD19+ cells returned to normal on a median time of day 79(41-118). All patients developed hypogammaglobulinemia with a median onset time of 2 weeks post-infusion. IgG recovered in 6 patients with a median time on day 184(89-346). IgM recovered on days 212, 242, and 346 in 3 patients. IgA recovered most slowly and remained low >1 year postinfusion. A total of 9 infections occurred in 6(28.57%) patients. CONCLUSIONS: Our data showed prolonged reconstitution of immune function, especially humoral immunity, in R/R B cell ALL patients receiving anti-CD19 CAR-T cell therapy.

16.
Ecotoxicol Environ Saf ; 208: 111464, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33075589

RESUMO

Ambient fine particulate matter (PM2.5) exposure correlates with adverse cardiometabolic effects. The underlying mechanisms have not yet been fully understood. Hypothalamic-pituitary-adrenal (HPA) axis, as the central stress response system, regulates cardiometabolic homeostasis and is implicated in the progression of various adverse health effects caused by inhalational airborne pollutant exposure. In this study, we investigated whether ambient PM2.5 exposure activates HPA axis and its effect mediating PM2.5-induced pulmonary inflammation. C57Bl/6 J mice were intratracheally instilled with different concentrations of diesel exhaust PM2.5 (DEP), and plasma was harvested at different times. Assessments of plasma stress hormones revealed that DEP instillation dose- and time-dependently increased mouse circulating corticosterone and adrenocorticotropic hormone (ACTH) levels, strongly supporting that DEP instillation activates HPA axis. To determine which components of DEP activate HPA axis, C57Bl/6J mice were intratracheally instilled with water-soluble and -insoluble fractions of DEP. Plasma analyses showed that water-insoluble but not -soluble fraction of DEP increased circulating corticosterone and ACTH levels. Consistently, concentrated ambient PM2.5 (CAP) exposure significantly increased mouse urine and hair corticosterone levels, corroborating the activation of HPA axis by ambient PM2.5. Furthermore, deletion of stress hormones by total bilateral adrenalectomy alleviated PM2.5-induced pulmonary inflammation, providing insights into the contribution of central neurohormonal mechanisms in modulating adverse health effects caused by exposure to PM2.5.

17.
Exp Ther Med ; 20(6): 156, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093894

RESUMO

Neural stem cells (NSCs) are characterized by their potential for self-renewal and ability to differentiate into neurons, astrocytes, and oligodendrocytes. They are of great value to scientific studies and clinical applications. Culturing NSCs in vitro is important for characterizing their properties under controlled environmental conditions that may be modified and monitored accurately. The present study explored a modified, detailed and efficient protocol for the isolation, culture and cryopreservation of rat embryonic NSCs. In particular, the viability, nestin expression, and self-renewal and multi-differentiation capabilities of NSCs cryopreserved for various periods of time (7 days, or 1, 6 or 12 months) were characterized and compared. Rat embryonic NSCs were successfully obtained and maintained their self-renewal and multipotent differentiation capabilities even following long-term cryopreservation (for up to 12 months).

18.
Artigo em Inglês | MEDLINE | ID: mdl-33104883

RESUMO

BACKGROUND: Ewing's sarcoma (ES) is a kind of malignant tumor, which often occurs in the long bone, pelvis, and other bone tissues, as well as some soft tissues. It often occurs in children and adolescents, second only to osteosarcoma and rhabdomyosarcoma. In the past 30 years, little progress has been made on the genomic mechanism of ES metastasis. METHODS: The gene expression sequence of ES metastasis samples was compared with that of primary tumor samples to obtain differentially expressed genes (DEGs). Subsequently, we annotated the gene functions and enriched pathways of DEGs. Additionally, the protein and protein interaction network were constructed to screen key genes that can lead to the metastasis in ES. Then, cell and molecular biology experiments were conducted to verify the results obtained from the bioinformatics analysis. Finally, we assessed the correlation of expression between the key genes EWSR and FLI1, and conducted a survival analysis of ICAM1. RESULTS: Our study revealed 153 DEGs. Of these, 82 (53.59%) were upregulated and the remaining 71 (46.41%) were downregulated. The bioinformatics analysis showed that ICAM1 was the key gene leading to the invasion and metastasis of ES. Through cell biology and molecular biology experiments, inactivation of ICAM1 inhibited the metastasis of ES cells. The survival and correlation analyses showed that ICAM1 was a risk factor in patients with ES, and that ICAM1 expression was correlated with EWSR and FLI1 expression. CONCLUSION: Our study shows that inactivation of ICAM1 inhibits metastasis and improves the prognosis of ES. Additionally, our findings provide a better understanding of the underlying mechanisms of metastatic ES, a basis for an accurate diagnosis, and therapeutic targets for ES patients.

19.
Am J Transplant ; 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32805756

RESUMO

Boosting T cell immune response posttransplant with checkpoint inhibitors increases graft-versus-lymphoma (GVL) effects at the cost of increasing acute graft-versus-host disease (aGVHD). A combined targeted therapy is needed to decrease checkpoint inhibitors-induced aGVHD without impairing GVL. We studied whether this competition could be avoided by giving concurrent anti-PD-1 antibody and ruxolitinib in allotransplant mouse models in which recipients were challenged with A20 or EL4 lymphoma cells. Given alone the PD-1 antibody increased GVL but did not improve survival of recipients challenged with A20 cells because of increased deaths from aGVHD. Adding ruxolitinib decreased levels of effector T cells and related cytokines. Tbx21- T cells had higher PD-1 levels compared with Tbx21+ T cells. Ruxolitinib increased PD-1 levels on donor T cells by suppressing Tbx21 expression. Ruxolitinib increased apoptosis of T cells which was reversed by the PD-1 antibody. PD-1 antibody preserved expression of granzyme B and cytotoxicity of T cells which were decreased by ruxolitinib. The net result of combined therapy was increased GVL, no increase in aGVHD and increased survival. The combined therapy improved survival of recipients challenged by A20 cells which expressed high level of PD-L1, but not EL4 cells which do not express PD-L1.

20.
Cryobiology ; 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858005

RESUMO

This present study investigated the effect of bioactive peptide (BAPT) (BAPT) on the quality of ram semen during cryopreservation. Ram ejaculates were extended with Tris buffer supplemented with no antioxidants (as control group), 20 µg/mL BAPT (as BAPT20 group), 40 µg/mL BAPT (as BAPT40 group) and 60 µg/mL BAPT (as BAPT60 group). After cryopreservation, sperm quality including motility, vitality, the percentage of hypoosmotic swelling test (HOST)-positive spermatozoa and the percentage of intact acrosomes was assessed. Furthermore, the malondialdehyde (MDA) in seminal plasma and spermatozoa were analyzed, followed by the measurement of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GSH-Px) levels in seminal plasma. After in vitro fertilization, the embryonic cleavage rates and development rates of different groups were analyzed to compare the developmental abilities of spermatozoa. The results showed that the post-thaw sperm motility was significantly higher in the BAPT60 group compared to those in the BAPT20, BAPT40 and control groups (P < 0.05). The percentage of live sperms significantly increased from 48.12 ± 2.35% for the BAPT20 group, 55.43 ± 2.16% for the BAPT40 group to 57.53 ± 3.15% for the BAPT60 group. The percentage of HOST-positive spermatozoa was significantly higher in the BAPT60 group than those in BAPT20, BAPT40 and control groups (P < 0.05). The MDA levels in seminal plasma and spermatozoa were significantly reduced with BAPT supplement (P < 0.05). Additionally, the SOD, CAT and GSH-Px levels in the BAPT experimental groups were significantly higher than those of the control group, which further indicated that BAPT significantly inhibit the reactive oxygen species (ROS) production during the cryopreservation of ram semen. Furthermore, the embryonic cleavage rates and development rates of the BAPT40 and BAPT60 groups were significantly increased in comparison with the BAPT20 and control groups (P < 0.05). In conclusion, BAPT improved the ram sperm quality via inhibiting the ROS production during cryopreservation, and could be applied as a promising supplement for ram semen cryopreservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...