Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Dermatol Sci ; 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29903654


BACKGROUND: Allergic contact dermatitis (ACD) is a highly prevalent inflammatory disease of the skin. As a result of the complex etiology in ACD, therapeutic compounds targeting refractory pruritus in ACD lack efficacy and lead to numerous side effects. OBJECTIVE: In this study, we investigated the anti-pruritic effects of oxymatrine (OMT) and explored its mechanism of action in a mouse model of ACD. METHOD: 72 male SPF C57BL/6 mice were randomly divided into control group, ACD model group, dexamethasone positive control group (0.08 mg kg-1) and 3 OMT groups (80, 40, 20 mg kg-1). OMT was administrated by intraperitoneal injection 1 h before video recording on day 10, 24 h after 2nd challenge with SADBE. Cheek skin fold thickness was measured before treatment and after recording. H&E staining was used for pathological observation. RT-qPCR, Immunohistochemistry and LEGENDplexTM assay were used to detect cytokines levels. The population of Treg cells in peripheral blood were detected via flow cytometry. RESULTS: OMT treatment significantly decreases the skin inflammation and scratching bouts. It rescues defects in epidermal keratinization and inflammatory cell infiltration in ACD mice. Administration of OMT significantly reduced levels of IFN-γ, IL-13, IL-17A, TNF-α, IL-22 and mRNA expression of TNF-α and IL-1ß. Furthermore, it increased the percentage of Treg cells in peripheral blood of ACD mice. CONCLUSION: We have demonstrated that OMT exhibits anti-pruritic and anti-inflammatory effects in ACD mice by regulating inflammatory mediators. OMT might emerge as a potential drug for the treatment of pruritus and skin inflammation in the setting of ACD.

J Ethnopharmacol ; 195: 118-126, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27880884


ETHNOPHARMACOLOGICAL RELEVANCE: The Angong Niuhuang Pill (ANP) is a well known Chinese traditional therapeutic for the treatment for diseases affecting the Central Nervous System (CNS). Components of the ANP formulation, including Bovis Calculus Sativus, Pulvis Bubali Comus Concentratus, Moschus, Margarita, Cinnabaris, Realgar, Coptidis Rhizoma, Scutellariae Radix, Gardeniae Fructus, Curcumae Radix, and Bomeolum Syntheticum, have been used for the treatment of stroke, encephalitis and emergency meningitis across Asia, especially in China for hundreds of years. OBJECTIVE: The goal of this study was to investigate the anti-atherosclerosis and cardio-protective effects of ANP administration using a rodent model of atherosclerosis induced by a high fat and vitamin D3. METHODS: Specific Pathogen-Free (SPF) 78 male SD rats were randomly divided into a control group and 5 atherosclerotic model groups. The atherosclerotic groups were divided to receive either Simvastatin (SVTT, 0.005g/kg), Low-dose ANP (0.125g/kg), Medium-dose ANP (0.25g/kg), and High-dose ANP (0.5g/kg). Following adaptive feeding for one week, atherosclerosis was induced and the atherosclerosis model was established. Experimental drugs (either simvastatin or ANP) or normal saline were administered intragastrically once daily for 9 weeks starting from the 8th week. A carotid artery ultrasound was performed at the 17th week to determine whether atherosclerosis had been induced. After the atherosclerosis model was successfully established, platelet aggregation rates, serum biochemical indices, apoptosis-related Bcl-2, Bax proteins levels in the heart were assayed. Pathological and histological analysis was completed using artery tissue from different experimental different groups to assess the effects of ANP. RESULTS: ANP significantly decreased aortic membrane thickness, the maximum platelet aggregation rates, and the ratio of low density lipoprotein cholesterol (LDL) to high density lipoprotein cholesterol (HDL). In addition, ANP significantly reduced serum contents of total cholesterol, low density lipoprotein, malondialdehyde, troponin I, high-sensitivity C-reactive protein, and lactate dehydrogenase. ANP markedly improved abnormal pathological conditions of the aorta and heart, and helped to prevent myocardial apoptosis. CONCLUSIONS: We have demonstrated that ANP has robust ant-atherosclerosis and cardio-protective effects on a high-fat and vitamin D3 - induced rodent model of atherosclerosis due to its antiplatelet aggregation, lipid regulatory, antioxidant, anti-inflammatory and anti-apoptotic properties.

Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Doenças das Artérias Carótidas/prevenção & controle , Colecalciferol , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas/farmacologia , Hipolipemiantes/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/ultraestrutura , Doenças da Aorta/sangue , Doenças da Aorta/induzido quimicamente , Doenças da Aorta/diagnóstico por imagem , Apoptose/efeitos dos fármacos , Aterosclerose/sangue , Aterosclerose/induzido quimicamente , Aterosclerose/diagnóstico por imagem , Biomarcadores/sangue , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/induzido quimicamente , Doenças das Artérias Carótidas/diagnóstico por imagem , Modelos Animais de Doenças , Enzimas/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mediadores da Inflamação/sangue , Lipídeos/sangue , Masculino , Miocárdio/patologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação de Plaquetas/farmacologia , Ratos Sprague-Dawley , Sinvastatina/farmacologia , Comprimidos , Fatores de Tempo