Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Front Pediatr ; 7: 483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803701


Background: Familial Mediterranean fever (FMF) is an inherited auto-inflammatory disorder and is extremely rare in Chinese. This study aimed to investigate the demographic, clinical, and genetic features of FMF in a series of Chinese pediatric patients. Methods: This was a retrospective case series of children with recurrent febrile or inflammatory episodes and referred to the Peking Union Medical College Hospital between 06/2013 and 06/2018. All suspected patients were genetically diagnosed and met the Tel-Hashomer criteria for FMF. Demographic, clinical, genetic, and treatment characteristics were collected. Descriptive statistics were used. Results: Eleven patients were included (seven boys and four girls). The median age at the time of disease onset was 7.1 (range, 3-12) years, while the median age at diagnosis was 10.9 (range, 6-15) years. The median delay in diagnosis was 2.1 years (range, 6 months to 6.7 years). Fever (100%, 11/11) was the most common symptom, followed by joint pain (63.6%, 7/11), rash (54.5%, 6/11), abdominal pain (36.4%, 4/11), and oral ulcers (18.2%, 2/11), without evidence of amyloidosis. C-reactive protein (81.8%, 9/11) and erythrocyte sedimentation (90.9%, 10/11) were increased during attacks. All patients harbored one to five different MEFV mutations, with E148Q and L110P being the most frequent. A novel non-synonymous mutation F636Y in exon 10 was discovered. Favorable responses to colchicine was observed in all six treated patients. Conclusion: The most common variants in our study were E148Q and L110P. F636Y may found for the first time. Colchicine led to favorable responses in all treated patients.

PLoS One ; 10(2): e0117405, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658113


Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their own CAFs via EMT in this model.

Fibroblastos/metabolismo , Cariótipo , Neoplasias Laríngeas/patologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Xenoenxertos , Humanos , Neoplasias Laríngeas/metabolismo , Camundongos Nus , Invasividade Neoplásica , Fenótipo