Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Vet Microbiol ; 274: 109551, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36067658

RESUMO

Viroporins are virus-encoded proteins that mediate ion channel (IC) activity, playing critical roles in virus entry, replication, pathogenesis, and immune evasion. Previous studies have shown that some coronavirus accessory proteins have viroporin-like activity. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that encodes three accessory proteins, NS6, NS7, and NS7a. However, whether any of the PDCoV accessory proteins possess viroporin-like activity, and if so which, remains unknown. In this study, we analyzed the biochemical properties of the three PDCoV-encoded accessory proteins and found that NS7a could enhance the membrane permeability of both mammalian cells and Escherichia coli cells. Indirect immunofluorescence assay and co-immunoprecipitation assay results further indicated that NS7a is an integral membrane protein and can form homo-oligomers. A bioinformation analysis revealed that a putative viroporin domain (VPD) is located within amino acids 69-88 (aa69-88) of NS7a. Experiments with truncated mutants and alanine scanning mutagenesis additionally demonstrated that the amino acid residues 69FLR71 of NS7a are essential for its viroporin-like activity. Together, our findings are the first to demonstrate that PDCoV NS7a possesses viroporin-like activity and identify its key amino acid residues associated with viroporin-like activity.

2.
Microbiology (Reading) ; 168(9)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36178801

RESUMO

Staphylococcus aureus is a major human pathogen, which has multiple drug resistance and can cause serious infections. Recent studies have shown that berberine has antibacterial activity and it can affect biofilm formation of S. aureus. However, the berberine effect on the biofilm of S. aureus is controversial. In this study, we investigate the effect of berberine on the biofilm development in S. aureus NCTC8325 and explore the possible mechanism. Susceptibility test shows that berberine inhibits growth of methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate S. aureus (VISA) at different concentrations. S. aureus NCTC8325 is chosen as a model strain to explore further the berberine effect. The MIC of berberine for S. aureus NCTC8325 is 256 µg ml-1. Berberine below 32 µg ml-1 inhibits the dispersal of biofilm and stimulates clumping of cells of NCTC8325 in a concentration-dependent manner, while not showing obvious inhibition on the bacterial growth. The transcription of the key negative regulator of biofilm dispersal AgrA is decreased and an agrA mutant forms biofilm reaching to a similar level of biomass to WT in the presence of berberine at 32 µg ml-1. Transcription of some genes involving synthesis of biofilm structure components, including polysaccharide intracellular adhesin (PIA), proteins and eDNA were also up-regulated, especially icaA for PIA synthesis. And consistently, PIA content was increased in cells exposed to berberine at 32 µg ml-1. This study reveals the dependence of berberine inhibition of biofilm dispersal on the Agr system, which is the first report exploring the molecule mechanism of the berberine effect on the biofilm of S. aureus.

3.
J Immunol ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130827

RESUMO

The receptor tyrosine kinase EPHB2 (EPH receptor B2) is highly expressed in many human cancer types, especially in gastrointestinal cancers, such as colorectal cancer. Several coding mutations of the EPHB2 gene have been identified in many cancer types, suggesting that EPHB2 plays a critical role in carcinogenesis. However, the exact functional mechanism of EPHB2 in carcinogenesis remains unknown. In this study, we find that EPHB2 is required for TNF-induced signaling activation and proinflammatory cytokine production in colorectal epithelial cells. Mechanistically, after TNF stimulation, EPHB2 is ubiquitinated by its E3 ligase RNF186. Then, ubiquitinated EPHB2 recruits and further phosphorylates TAB2 at nine tyrosine sites, which is a critical step for the binding between TAB2 and TAK1. Due to defects in TNF signaling in RNF186-knockout colorectal epithelial cells, the phenotype of colitis-propelled colorectal cancer model in RNF186-knockout mice is significantly reduced compared with that in wild-type control mice. Moreover, we find that a genetic mutation in EPHB2 identified in a family with colorectal cancer is a gain-of-function mutation that promoted TNF signaling activation compared with wild-type EPHB2. We provide evidence that the EPHB2-RNF186-TAB2-TAK1 signaling cascade plays an essential role in TNF-mediated signal transduction in colorectal epithelial cells and the carcinogenesis of colorectal cancer, which may provide potential targets for the treatment of colorectal cancer.

4.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012700

RESUMO

Obesity has achieved the appearance of a global epidemic and is a serious cause for concern. The hypothalamus, as the central regulator of energy homeostasis, plays a critical role in regulating food intake and energy expenditure. In this study, we show that TRIM67 in the hypothalamus was responsive to body-energy homeostasis whilst a deficiency of TRIM67 exacerbated metabolic disorders in high-fat-diet-induced obese mice. We found exacerbated neuroinflammation and apoptosis in the hypothalamus of obese TRIM67 KO mice. We also found reduced BDNF in the hypothalamus, which affected the fat sympathetic nervous system innervation and contributed to lipid accumulation in adipose tissue under high-fat-diet exposure. In this study, we reveal potential implications between TRIM67 and the hypothalamic function responding to energy overuptake as well as a consideration for the therapeutic diagnosis of obesity.


Assuntos
Hipotálamo , Obesidade , Proteínas com Motivo Tripartido , Tecido Adiposo/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Proteínas com Motivo Tripartido/genética
5.
PLoS One ; 17(8): e0273010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960732

RESUMO

Pine wilt disease is a dangerous pine disease globally. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, to study the molecular mechanism of their high resistance to pine wood nematodes (PWN,Bursaphelenchus xylophilus). Nine strains of seedlings of genetically stable Masson pine screened from different families with high resistance to PWN were used. The same number of sensitive clones were used as susceptible controls. Total proteins were extracted for tandem mass tag (TMT) quantitative proteomic analysis. The key proteins were verified by parallel reaction monitoring (PRM). A threshold of upregulation greater than 1.3-fold or downregulation greater than 0.3-fold was considered significant in highly resistant strains versus sensitive strains. A total of 3491 proteins were identified from the seedling tissues, among which 2783 proteins contained quantitative information. A total of 42 proteins were upregulated and 96 proteins were downregulated in the resistant strains. Functional enrichment analysis found significant differences in the proteins with pectin esterase activity or peroxidase activity. The proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, and the sugar glycosaminoglycan degradation pathway were also changed significantly. The PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase, and chitinase were significantly downregulated, while aspartic protease was significantly upregulated, which was consistent with the proteomic data. These results suggest that Masson pine can degrade nematode-related proteins by increasing protease to inhibit their infestation, and can enhance the resistance of Masson pine to PWN by downregulating carbon metabolism to limit the carbon available to PWN or for involvement in cell wall components or tissue softening. Most of the downregulated proteins are supposed to act as an alternative mechanism for latter enhancement after pathogen attacks. The highly resistant Masson pine, very likely, harbors multiple pathways, both passive and active, to defend against PWN infestation.


Assuntos
Nematoides , Pinus , Tylenchida , Animais , Carbono , Humanos , Peptídeo Hidrolases , Peroxidases , Melhoramento Vegetal , Doenças das Plantas , Proteômica , Tylenchida/fisiologia
6.
Signal Transduct Target Ther ; 7(1): 303, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045132

RESUMO

Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.


Assuntos
Células Endoteliais , Glicólise , Fosfofrutoquinase-2 , Células Endoteliais/metabolismo , Fibrose , Glicólise/genética , Humanos , NADP/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
7.
Diabetes Metab Syndr Obes ; 15: 2265-2276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936053

RESUMO

Introduction: The study objective was to investigate the effects of electroacupuncture performed at the he-sea and front-mu acupoints on the intestinal microflora and intestinal barrier in db/db mice and to explore the related mechanism in type 2 diabetes mellitus. Methods: Db/m mice in the normal control group (NOC), electroacupuncture group (EA), metformin group (MET) and T2DM group (T2DM) were used as model controls, and db/db mice were used in all three groups, with 8 mice in each group. The treatment period was 2 weeks. Fasting blood glucose (FBG) and triglyceride (TG) levels were measured. Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) levels were detected by enzyme-linked immune sorbent assay (ELISA). The ileal tissue was stained with hematoxylin-eosin staining (H&E), and histopathological changes were observed under a light microscope. Illumina sequencing was used to analyze the V4 region of the 16S rRNA gene to evaluate the effect of EA on the intestinal flora. Results: Our results suggest that EA treatment can reduce the expression of diabetes-related markers, with an effect similar to that of metformin. After EA intervention, the abundance of Firmicutes and the ratio of Firmicutes to Bacteroidetes increased, while the abundances of Bacteroidetes and Eubacterium decreased. In addition, the serum levels of LPS and TNF-α in the electroacupuncture group were downregulated, and ileal tissue damage was alleviated under an electron microscope. Conclusion: EA combined with acupoints can restore the intestinal flora structure, decrease the blood LPS level, reduce levels of inflammation, maintain the integrity of the intestinal barrier, and play a therapeutic role in the treatment of T2DM, mainly by increasing the abundance of Firmicutes and the ratio of Firmicutes to Bacteroidetes and decreasing the abundances of Bacteroidetes and Eubacterium.

8.
Neuropsychiatr Dis Treat ; 18: 1815-1830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36039158

RESUMO

Purpose: Accumulating research suggests that psychotherapy helps improve abstinence but the difference in the efficacy of multiple psychotherapies in alcohol use disorder (AUD) remains to be explored. Patients and Methods: A systematic search of databases (Pubmed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and EBSCO) for studies (published from inception to April 10th.) of adults diagnosed with AUD accepting psychotherapies was conducted. Studies covering 9 countries and regions. The qualitative analysis pooled 2646 individuals from 34 randomized controlled trials (RCTs) and the networks included 1928 participants (23 RCTs). The outcomes included percentage of days abstinent (PDA), change in drinks per drinking day (change in DDD), and change in craving compared among individuals accepting various psychotherapies. The protocol followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and was registered on the International Prospective Register of Systematic Reviews (PROSPERO). Results: For the network of PDA, motivational enhancement treatment (MET) (35.44, 11.78 to 59.09, high-certainty) and couple therapy (CT) (28.89, 13.42 to 44.36, moderate-certainty) were significantly different from treatment as usual (TAU) with the surface under the cumulative ranking curve (SUCRA) mean rank 1.9 and 1.9 respectively. TAU+supportive psychotherapy (SP) was better than TAU for the change in DDD in the high-quality direct comparison. Conclusion: The motivational enhancement and the couple therapy show potential amelioration for alcohol abstinence. Additionally, the preferred interventions are different for improving PDA and change in DDD. The evidence network remains to be strengthened.

10.
Clin Transl Med ; 12(8): e982, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35968938

RESUMO

BACKGROUND: Renal fibrosis is a serious condition that results in the development of chronic kidney diseases. The MEN1 gene is an epigenetic regulator that encodes the menin protein and its role in kidney tissue remains unclear. METHODS: Kidney histology was examined on paraffin sections stained with hematoxylin-eosin staining. Masson's trichrome staining and Sirius red staining were used to analyze renal fibrosis. Gene and protein expression were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Immunohistochemistry staining in the kidney tissues from mice or patients was used to evaluate protein levels. Flow cytometry was used to analyze the cell cycle distributions and apoptosis. RNA-sequencing was performed for differential expression genes in the kidney tissues of the Men1f/f and Men1∆/∆ mice. Chromatin immunoprecipitation sequencing (ChIP-seq) was carried out for identification of menin- and H3K4me3-enriched regions within the whole genome in the mouse kidney tissue. ChIP-qPCR assays were performed for occupancy of menin and H3K4me3 at the gene promoter regions. Luciferase reporter assay was used to detect the promoter activity. The exacerbated unilateral ureteral obstruction (UUO) models in the Men1f/f and Men1∆/∆ mice were used to assess the pharmacological effects of rh-HGF on renal fibrosis. RESULTS: The expression of MEN1 is reduce in kidney tissues of fibrotic mouse and human diabetic patients and treatment with fibrotic factor results in the downregulation of MEN1 expression in renal tubular epithelial cells (RTECs). Disruption of MEN1 in RTECs leads to high expression of α-SMA and Collagen 1, whereas MEN1 overexpression restrains epithelial-to-mesenchymal transition (EMT) induced by TGF-ß treatment. Conditional knockout of MEN1 resulted in chronic renal fibrosis and UUO-induced tubulointerstitial fibrosis (TIF), which is associated with an increased induction of EMT, G2/M arrest and JNK signaling. Mechanistically, menin recruits and increases H3K4me3 at the promoter regions of hepatocyte growth factor (HGF) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (Adamts5) genes and enhances their transcriptional activation. In the UUO mice model, exogenous HGF restored the expression of Adamts5 and ameliorated renal fibrosis induced by Men1 deficiency. CONCLUSIONS: These findings demonstrate that MEN1 is an essential antifibrotic factor in renal fibrogenesis and could be a potential target for antifibrotic therapy.


Assuntos
Nefropatias , Obstrução Ureteral , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Epigênese Genética/genética , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
11.
Phytochemistry ; 203: 113336, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35933005

RESUMO

Four undescribed neolignans and three undescribed amide alkaloids, along with twelve known compounds, were isolated from the stems of Piper kadsura (Choisy) Ohwi. The structures of the new compounds were determined by spectroscopic analysis, quantum-chemical calculations, and Mo2(OAc)4-induced ECD analysis. The neuroprotective effects of these compounds against Aß25-35-induced cell damage in PC12 cells were investigated, and eight compounds exhibited significant neuroprotective effects against Aß25-35-induced PC12 cell damage, with the EC50 values of 3.06-29.3 µM. Three of these compounds were selected for further experiments, and they appear to reduce apoptosis and enhance autophagy against Aß25-35-induced PC12 cell damage.

12.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806477

RESUMO

Obesity is considered as a major cause for the development and progress of non-alcoholic fatty liver disease (NAFLD), which is one of the most prevalent chronic liver diseases worldwide. However, molecular mechanisms that implicate in obesity-driven pathophysiology of NAFLD are not well defined. Here, we report a tripartite motif (TRIM) protein family member-TRIM67-that is hardly expressed in liver but is inducible on obese conditions. Enhanced expression of TRIM67 activates hepatic inflammation to disturb lipid metabolic homeostasis and promote the progress of NAFLD induced by obesity, while the deficiency in TRIM67 is protective against these pathophysiological processes. Finally, we show that the important transcription coactivator PGC-1α implicates in the response of hepatic TRIM67 to obesity.


Assuntos
Proteínas do Citoesqueleto , Hepatopatia Gordurosa não Alcoólica , Obesidade , Proteínas com Motivo Tripartido , Proteínas do Citoesqueleto/metabolismo , Homeostase , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteínas com Motivo Tripartido/metabolismo
13.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887011

RESUMO

Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Proteínas do Citoesqueleto , Dieta Hiperlipídica/efeitos adversos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Suínos , Proteínas com Motivo Tripartido/metabolismo
14.
J Sci Food Agric ; 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789490

RESUMO

BACKGROUND: Understanding pesticide penetration behavior is important for effective application of pesticides. However, there is a lack of an effective method to monitor pesticide penetration behavior and its changing process. In the present study, a novel surface-enhanced Raman scattering (SERS) mapping method was used for real-time and in situ tracking of the penetration behaviors of thiram and thiram-organosilicon mixture on cabbage leaves. RESULTS: The results suggest that thiram has very weak ability to penetrate into cabbage leaves. However, when the thiram-organosilicon mixture was placed on leaf surfaces, a clear thiram signal was detected inside the leaf after 2 h of exposure, a strong signal was observed after 12 h, and the penetration depth of thiram was approximately 200 µm after 48 h. CONCLUSION: SERS mapping was demonstrated to be a reliable method for in situ monitoring of organosilicon-induced thiram penetration into cabbage leaf over time. The present study provides a new reference for rationally selecting adjuvants, effectively applying pesticides, and reducing pesticides residue in food. © 2022 Society of Chemical Industry.

15.
EMBO Rep ; 23(7): e53855, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642598

RESUMO

The retrovirus HIV-1 integrates into the host genome and establishes a latent viral reservoir that escapes immune surveillance. Molecular mechanisms of HIV-1 latency have been studied extensively to achieve a cure for the acquired immunodeficiency syndrome (AIDS). Latency-reversing agents (LRAs) have been developed to reactivate and eliminate the latent reservoir by the immune system. To develop more promising LRAs, it is essential to evaluate new therapeutic targets. Here, we find that CBX4, a component of the Polycomb Repressive Complex 1 (PRC1), contributes to HIV-1 latency in seven latency models and primary CD4+ T cells. CBX4 forms nuclear bodies with liquid-liquid phase separation (LLPS) properties on the HIV-1 long terminal repeat (LTR) and recruits EZH2, the catalytic subunit of PRC2. CBX4 SUMOylates EZH2 utilizing its SUMO E3 ligase activity, thereby enhancing the H3K27 methyltransferase activity of EZH2. Our results indicate that CBX4 acts as a bridge between the repressor complexes PRC1 and PRC2 that act synergistically to maintain HIV-1 latency. Dissolution of phase-separated CBX4 bodies could be a potential intervention to reactivate latent HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , HIV-1/genética , Humanos , Ligases , Corpos Nucleares , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb/genética , Latência Viral/genética
16.
Environ Technol ; : 1-9, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35658802

RESUMO

This study aimed to investigate pollutant concentration and nitrogen interception characteristics of a forward osmosis (FO) process for concentrating black odorous water. The membrane cell was operated in active layer facing feed solution (AL-FS) mode with aquaporin (AQP) as the membrane material and NaCl solution as the draw solution (DS). The organic pollutants (COD), TP, NH+4-N, NO-3-N, TN, Fe and Mn in black odorous water were concentrated non-intermittently for 24 h, and their interception characteristics were investigated. The results showed that the average interception rates of COD, TP, NO- 3-N, TN, Fe and Mn were 97.2%, 98.0%, 58.7%, 54.3%, 61.8% and 60.0%, respectively, while the average interception rate of NH+4-N was only 1.27%-3.47%. To explore the characteristics of nitrogen interception, a comparison was conducted between AQP membrane and thin film composite (TFC) membrane. Because the surface electronegativity of AQP membrane was stronger than that of TFC, the effect of cation exchange on ammonia nitrogen interception was more serious with AQP membrane. With NaCl solution as DS, the reverse osmosis flux of Na+ was (0.53 ± 0.02 mol·m-2·h-1), which was significantly higher than that of Cl- (0.29 ± 0.03 mol·m-2·h-1) (P < 0.05). The interception effect of AQP membrane on TN was related to the proportion of NH+4-N in TN. The pretreatment of black odorous water by aeration could transform part of NH+4-N into NO-3-N, and reduce the negative effect of cation exchange effect on nitrogen interception. The TN interception rate increased from 54.3% to 66.1%.

17.
Arch Oral Biol ; 141: 105471, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689993

RESUMO

OBJECTIVE: We aimed to investigate the composition and functions discrepancy of supragingival plaque associated with active deciduous teeth caries in mixed dentitions. DESIGN: Thirty-three subjects with mixed dentition participated in this study. Children with deciduous teeth caries (dt ≥ 3) were recruited to the caries group, whereas children without deciduous teeth caries (dt = 0) were recruited to the caries-free group. Plaque were collected from deciduous teeth surface and permanent teeth surface respectively. A total of 66 samples of dental plaque were collected and conserved. Illumina 16S rRNA sequencing and diversity analysis were performed for microbiome. Untargeted liquid chromatograph-mass (LC-MS) and partial least squares discriminant analysis were performed for metabolome. RESULTS: A dominant microbiome of 8 phyla and 22 genera were detected. The alpha diversity indices did not detect differences between the caries and caries-free groups (p > 0.05). Beta diversity analysis showed that the microbiota composition was similar between subgroups. Comparative analysis at genus level did not detect difference between caries and caries-free subgroups. The metabolomics analysis yielded 419 biochemical metabolites, 56 of which were related to caries status. Metabolites in glucose metabolism and byproducts of oxidative stress were identified as related to dental caries in mixed dentition. Dominant bacteria are positively correlated with metabolites, such as Streptococcus and organic acids. CONCLUSIONS: The upgrade of glucose metabolism and oxidative stress was observed in caries status. Functions discrepancy of oral microbiome may be more pronounced than the composition of oral microbiome with active dental caries in mixed dentitions.


Assuntos
Cárie Dentária , Placa Dentária , Microbiota , Criança , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Glucose , Humanos , Microbiota/genética , Projetos Piloto , RNA Ribossômico 16S/genética
18.
Chem Commun (Camb) ; 58(56): 7809-7812, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736140

RESUMO

Sensitive sensing of nitroaromatic compounds (NACs) is realized by using luminescent lanthanum-tricarboxytriphenylamine (La-TCA) nanosheets fabricated by a top-down sonication assisted strategy. The accessible Lewis base sites and electron-rich fluorophores on the surface of the La-TCA nanosheets enable them to interact with electron-deficient NACs, delivering multi-responsive behaviours (emission intensity quenching, wavelength red-shift and valley) for hydroxyl group NACs.

19.
Int Immunopharmacol ; 110: 108921, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724606

RESUMO

Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.


Assuntos
Artrite , Receptor Tipo 2 de Angiotensina , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Imidazóis , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Medula Espinal/metabolismo , Sulfonamidas , Tiofenos
20.
Nano Lett ; 22(13): 5575-5583, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35763414

RESUMO

Synthetic biology has promoted the development of microbial therapy, but the scope of applicable microbial species is limited and transgenic microorganisms also display safety risks for in vivo applications. Interestingly, symbiotic microorganisms in nature can achieve functional updates by metabolic cooperation. Here, we report on a nongenetic method for engineering microorganisms to construct a heavy metal ion reduction system, which was prepared by linking Shewanella oneidensis MR-1 (SO) and Lactobacillus rhamnosus GG (LGG). SO could reduce metal ions but is limited by finite substrates in vivo. LGG could metabolize glucose to lactate as a substrate for SO, promoting extracellular electron transfer by SO and heavy metal ion reduction. Meanwhile, SO could generate electron donor cytochrome C to promote metabolism of LGG, forming metabolic synergy and circulation between these two bacteria. The SO-LGG system shows splendid ability to remove heavy metal ions and inflammatory modulation in acute or chronic heavy metal poisoning.


Assuntos
Metais Pesados , Shewanella , Transporte de Elétrons , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...