Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
2.
Environ Int ; 158: 106923, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634619

RESUMO

As the use of zinc oxide nanoparticles (ZnO NPs) in everyday products grows, so does concern about health risks. However, no findings on the gastrointestinal toxicity of ZnO NPs have been published. We investigated the possible malignant transformation of ZnO NPs in the mice's colonic tissues using the APCmin/+ mouse model with a premalignant lesion in intestinal epithelial cells. Higher doses and long-term oral exposure to ZnO NPs were found to mildly promote colonic inflammation in WT mice, while they moderately or strongly exacerbated the severity of chronic inflammation and tumorigenesis in APCmin/+ mice with intestinal adenomatous polyposis. The ZnO NPs-induced inflammation and tumorigenesis in colonic epithelial cells was linked to the activation of CXCR2/NF-κB/STAT3/ERK and AKT pathways. Analysis of the ZnO NPs-exacerbated intestinal adenomatous polyposis in APCmin/+ mice revealed that ZnO NPs could activate the APC-driven Wnt/ß-catenin signaling pathway, exacerbating intestinal tumorigenesis. In fact, ZnO NPs have been shown to increase intestinal inflammation and tumorigenesis in APCmin/+ mice by releasing free Zn2+. In WT mice, a low dose of ZnO NPs (26 mg/kg/day) did not cause intestinal inflammation. In conclusion, higher doses and prolonged exposure to ZnO NPs promote the malignant transformation of precancerous epithelial cells.

3.
Front Immunol ; 12: 728082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512660

RESUMO

CD8+ T cells are major components of adaptive immunity and confer robust protective cellular immunity, which requires adequate T-cell numbers, targeted migration, and efficient T-cell proliferation. Altered CD8+ T-cell homeostasis and impaired proliferation result in dysfunctional immune response to infection or tumorigenesis. However, intrinsic factors controlling CD8+ T-cell homeostasis and immunity remain largely elusive. Here, we demonstrate the prominent role of Brd4 on CD8+ T cell homeostasis and immune response. By upregulating Myc and GLUT1 expression, Brd4 facilitates glucose uptake and energy production in mitochondria, subsequently supporting naïve CD8+ T-cell survival. Besides, Brd4 promotes the trafficking of naïve CD8+ T cells partially through maintaining the expression of homing receptors (CD62L and LFA-1). Furthermore, Brd4 is required for CD8+ T cell response to antigen stimulation, as Brd4 deficiency leads to a severe defect in clonal expansion and terminal differentiation by decreasing glycolysis. Importantly, as JQ1, a pan-BRD inhibitor, severely dampens CD8+ T-cell immune response, its usage as an anti-tumor agent or latency-reversing agent for human immunodeficiency virus type I (HIV-1) should be more cautious. Collectively, our study identifies a previously-unexpected role of Brd4 in the metabolic regulation of CD8+ T cell-mediated immune surveillance and also provides a potential immunomodulation target.

4.
Curr Eye Res ; 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34547966

RESUMO

PURPOSE: To assess the retinal neurodegeneration in type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM) rhesus monkeys, and to investigate whether alterations of glial cells occur in the early stage of diabetic retinopathy (DR). MATERIAL AND METHODS: T1DM rhesus monkeys were established by daily intravenous injections of streptozotocin (STZ, 25 mg/kg body weight) in citrate buffer (pH 4.5) for 5 days, while T2DM rhesus monkeys were induced by feeding with high-fat diet. The period of DR in rhesus monkeys was evaluated by fundoscopy and optical coherence tomography (OCT). Afterward, the morphological changes of inner neurons and glial cells in the retina were detected by immunofluorescence (IF). RESULTS: When compared with the control groups, no difference was observed in both T1DM and T2DM by fundus photographs, while slight exudation and effusion in the blood vessels of retina of rhesus monkeys were found by OCT in DM rhesus monkeys. In addition, the expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (Iba1) were significantly increased in both T1DM (P<0.01) and T2DM (P<0.05) rhesus monkeys. Moreover, the positive expression of PKC-α, parvalbumin and NeuN were significantly decreased, while the positive expression of calbindin showed no difference in T1DM group. However, only the expression cells of PKC-α were reduced in T2DM group when compared with that of the control group. CONCLUSION: Astrocytes activation, reactive gliosis, and neurodegeneration were observed in both T1DM and T2DM rhesus monkey models at the early stage of DR.

5.
PLoS One ; 16(9): e0251937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506505

RESUMO

Pine wilt disease (PWD) is a devastating disease affecting trees belonging to the genus Pinus. To control the spread of PWD in the Masson pine forest in China, PWD resistant Masson pine clones have been selected by the Anhui Academy of Forestry. However, because Masson pine is a difficult-to-root species, producing seedlings is challenging, especially from trees older than 5 years of age, which impedes the application of PWD resistant clones. In this study, we investigated the factors affecting rooting of PWD resistant clones and established a cheap, reliable, and simple method that promotes rooting. We tested the effects of three management methods, four substrates, two cutting materials, two cutting treatments, and three collection times on the rooting of cuttings obtained from 9-year-old PWD resistant clones. Rooting was observed only in stem cuttings treated with the full-light automatic spray management method. Additionally, stem cuttings showed a significantly higher rooting rate and root quality than needles cuttings. Compared with other substrates, stem cuttings planted in perlite produced the longest adventitious root and the highest total root length and lateral root number. Moreover, stem cuttings of PWD resistant clones collected in May showed a significantly higher rooting rate and root quality than those collected in June and July. Moreover, stem cuttings prepared with a horizontal cut while retaining the needles showed significantly higher rooting rate and root quality than those prepared with a diagonal cut while partly removing the needles. This study promotes the reproduction of seedlings of PWD-resistant Masson pine clones which helps control the spread of PWD, meanwhile, provides a technical reference for the propagation of mature pine trees via cuttings.

6.
Chemosphere ; 287(Pt 1): 132075, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34474378

RESUMO

Influence of land use type and urbanization level on the distribution of pharmaceuticals and personal care products (PPCPs) from the developed regions of Beijing-Tianjin-Hebei in the northern China was evaluated. The seasonal and spatial variations of the 22 target PPCPs were analyzed in the 63 sampling sites along the whole Beiyun River Basin. Results showed that the total PPCPs concentration had a wide variation range, from 132 ng L-1 to 25474 ng L-1. Spatial interpolation analysis showed that agricultural land presented higher PPCPs contamination level than build-up land (p < 0.05) and the concentration was negatively correlated with urbanization level. Source apportionment showed the untreated sewage source contributed to 34%-53% of the PPCPs burden in the Beiyun River. Risk assessment indicated that diethyltoluamide, carbamazepine, octocrylene, gemfibrozil and triclocarban had high risks (RQ > 1), and small tributaries had the highest mixed risk (MRQ = 34). Species sensitivity distribution combined with the safety threshold method showed that PPCPs would have potential risk on aquatic organisms even at very low concentrations and triclocarban posed the highest risk in the Beiyun River.

7.
J Clin Invest ; 131(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375315

RESUMO

BACKGROUNDChimeric antigen receptor (CAR) T cells have emerged as an approach to treat malignant tumors. This strategy has also been proposed for the treatment of HIV-1 infection. We have developed a broadly neutralizing antibody-derived (bNAb-derived) CAR T cell therapy that can exert specific cytotoxic activity against HIV-1-infected cells.METHODSWe conducted an open-label trial of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of bNAb-derived CAR T cell therapy in individuals infected with HIV-1 who were undergoing analytical interruption of antiretroviral therapy (ART).RESULTSA total of 14 participants completed only a single administration of bNAb-derived CAR T cells. CAR T cell therapy administration was safe and well tolerated. Six participants discontinued ART, and viremia rebound occurred in all of them, with a 5.3-week median time. Notably, the cell-associated viral RNA and intact proviruses decreased significantly after CAR T cell treatment. Analyses of HIV-1 variants before or after CAR T cell administration suggested that CAR T cells exerted pressure on rebound viruses, resulting in a selection of viruses with less diversity and mutations against CAR T cell-mediated cytotoxicity.CONCLUSIONNo safety concerns were identified with adoptive transfer of bNAb-derived CAR T cells. They reduced viral reservoir. All the rebounds were due to preexisting or emergence of viral escape mutations.TRIAL REGISTRATIONClinicalTrials.gov (NCT03240328).FUNDINGMinistry of Science and Technology of China, National Natural Science Foundation of China, and Department of Science and Technology of Guangdong Province.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34369162

RESUMO

In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34365788

RESUMO

Supported metal nanoparticles (MNPs) have exhibited superior catalytic performance in various heterogeneous catalysis applications, which is usually influenced or even determined by the physicochemical properties of their porous supports. It is well acknowledged that understanding the regulation mechanism of supports is an important prerequisite to predict the catalytic performance of supported MNPs as well as the development of advanced catalysts. Here, we demonstrated that different transition-metal clusters (from Group IIIB to Group IIB) within metal-organic frameworks (MOFs) could accurately regulate the surface electronic status of supported platinum nanoparticles (Pt NPs), and the Pt/MOF composites showed a periodic activity trend in hydrogenation of 1-hexene. A strong correlation was found between the catalytic activity of Pt/MOF composites and the number of electrons in their outmost d orbitals of the transition-metal species, suggesting that the latter could play the role of prediction descriptor. Furthermore, this descriptor can be extended to predict the hydrogenation activity of more Pt/MOF composites and provide an important guiding principle for the design of supported MNPs catalysts.

10.
Nat Commun ; 12(1): 5000, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404805

RESUMO

The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Assuntos
Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/administração & dosagem , COVID-19/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Epitopos , Feminino , Células HEK293 , Haplorrinos , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Células Vero , Ativação Viral
11.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452113

RESUMO

The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.

12.
J Mol Med (Berl) ; 99(10): 1447-1458, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34223928

RESUMO

The NF-κB signaling pathway is an important downstream pathway of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL) cells. However, the molecular mechanisms underlying the cascade activation of Notch1 in T-ALL cells are poorly understood. Here, we evaluated the role of CARMA1 in Notch1-induced NF-κB activation in T-ALL cells. CARMA1 was highly and specifically expressed in T-ALL cells and correlated with the prognosis of T-ALL patients. Interestingly, CARMA1 knockdown only inhibited the growth and proliferation of SIL-TAL1 fusion gene-negative T-ALL cells. In addition, CARMA1 knockdown arrested T-ALL cells at the G1 phase. Furthermore, CARMA1 knockdown significantly inhibited the proliferation of T-ALL cells in vivo and prolonged the survival of mice. Mechanistically, CARMA1 deficiency abolished Notch1-induced NF-κB transcriptional activation and significantly reduced expression levels of the NF-κB target genes c-Myc, Bcl-2, and CCR7. Taken together, these results of our study identify CARMA1 as one of the crucial mediators of Notch1-induced transformation of T-All cells, suggesting that CARMA1 is a promising therapeutic target for T-ALL due to its specific expression in lymphocytes. KEY MESSAGES: CARMA1 contributes to cell survival only in SIL-TAL1 negative T-ALL cells. CARMA1 is a crucial mediator of Notch1-induced activation of NF-κB pathway. CARMA1 is a promising therapeutic target for T-ALL.

13.
Mol Brain ; 14(1): 119, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281602

RESUMO

Epigenetic abnormalities play a crucial role in many tumors, including glioma. RNA methylation occurs as an epigenetic modification similar to DNA methylation and histone modification. m6A methylation is the most common and most intensively studied RNA methylation, which can be found throughout the RNA life cycle and exert biological functions by affecting RNA metabolism. The m6A modification is primarily associated with three types of protease, which are encoded by the writer, eraser and reader genes, respectively. It has been shown that the m6A methylation has close connections with the occurrence and development of many tumors, including glioma. In this study, the concept and the research progress of m6A methylation are reviewed, especially the role of m6A methylation in glioma. Moreover, we will discuss how glioma is paving the way to the development of new therapeutic options based on the inhibition of m6A deposition.

14.
Chem Commun (Camb) ; 57(65): 8059-8062, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34296236

RESUMO

In this paper, an asymmetric allylic alkylation of easily available azomethine ylides with Morita-Baylis-Hillman (MBH) carbonates through a copper (i)/Lewis base cooperative catalysis strategy has been realized. The co-catalyzed asymmetric allylic alkylation provided the corresponding amino acid derivatives in up to 90% yields with up to 99% ee as well as good to excellent regioselectivity.

15.
Genes (Basel) ; 12(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207778

RESUMO

microRNAs (miRNAs) play an important role in gene regulation in animals by pairing with target gene mRNA. Many miRNAs are differentially expressed in the adipose tissue, often with conserved expression. In our study, we found that miR-208b expression was observed differently in the preadipocyte differentiation model. When miR-208b was overexpressed in the preadipocyte differentiation model, the overexpressed group displayed higher expression of PPARγ and FABP4-the markers of preadipocyte differentiation. Oil Red O staining revealed that the count of lipid droplets was increased in the overexpressed group. When the expression of miR-208b was inhibited, the above indicators showed an opposite trend. Moreover, results from both 5-ethynyl-2'-deoxyuridine (EDU) and cell counting kit (CCK) analysis showed that miR-208b promoted the proliferation of preadipocyte. Expression of gene CSNK2A2, a direct miR-208b target, was downregulated in the overexpressed group, providing a possible link to multiple signal pathways. Overall, our data indicate that miR-208b play a positive regulatory effect on the proliferation and differentiation of rabbit preadipocyte.

16.
Sheng Li Xue Bao ; 73(3): 355-368, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34230940

RESUMO

The disorder of brain-gut interaction is an important cause of irritable bowel syndrome (IBS), but the dynamic characteristics of the brain remain unclear. Since there are many shortcomings for evaluating brain dynamic nature in the previous studies, we proposed a new method based on slope calculation by point-by-point analysis of the data from functional magnetic resonance imaging, and detected the abnormalities of brain dynamic changes in IBS patients. The results showed that compared with healthy subjects, there were dynamic changes in the brain for the IBS patients. After correction by false discovery rate (FDR), significant abnormalities were only found in two functional connections of the right posterior cingulate gyrus linked to left middle frontal gyrus, and the right posterior cingulate gyrus linked to left pallidus. The above results of the brain dynamic analysis were totally different from those of the brain static analysis of IBS patients. Our findings provide novel complementary information for illustrating the central nervous mechanism of IBS and may offer a new direction to explore central target for patients with IBS.


Assuntos
Síndrome do Intestino Irritável , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Giro do Cíngulo/diagnóstico por imagem , Humanos , Síndrome do Intestino Irritável/diagnóstico por imagem , Imageamento por Ressonância Magnética
17.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202438

RESUMO

The chloroplast is a semi-autonomous organelle with its own genome. The expression of chloroplast genes depends on both chloroplasts and the nucleus. Although many nucleus-encoded proteins have been shown to localize in chloroplasts and are essential for chloroplast gene expression, it is not clear whether transcription factors can regulate gene expression in chloroplasts. Here we report that the transcription factor NAC102 localizes in both chloroplasts and nucleus in Arabidopsis. Specifically, NAC102 localizes in chloroplast nucleoids. Yeast two-hybrid assay and co-immunoprecipitation assay suggested that NAC102 interacts with chloroplast RNA polymerases. Furthermore, overexpression of NAC102 in chloroplasts leads to reduced chloroplast gene expression and chlorophyll content, indicating that NAC102 functions as a repressor in chloroplasts. Our study not only revealed that transcription factors are new regulators of chloroplast gene expression, but also discovered that transcription factors can function in chloroplasts in addition to the canonical organelle nucleus.


Assuntos
Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Cloroplastos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica , Transporte Proteico
18.
Org Lett ; 23(15): 5750-5754, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34286988

RESUMO

In this paper, we designed and synthesized a new type of cyclic carbonates, allenylethylene carbonates (AECs). With AECs as reactive precursors, we developed palladium-catalyzed (3+3) annulation of AECs with nitrile oxides. Various AECs worked well in this reaction under mild reaction conditions. A variety of 5,6-dihydro-1,4,2-dioxazine derivatives with allenyl quaternary stereocenters can be accessed in a facile manner in high yields (≤98%).

19.
Nat Cell Biol ; 23(7): 718-732, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239064

RESUMO

Patients with Coronavirus disease 2019 exhibit low expression of interferon-stimulated genes, contributing to a limited antiviral response. Uncovering the underlying mechanism of innate immune suppression and rescuing the innate antiviral response remain urgent issues in the current pandemic. Here we identified that the dimerization domain of the SARS-CoV-2 nucleocapsid protein (SARS2-NP) is required for SARS2-NP to undergo liquid-liquid phase separation with RNA, which inhibits Lys63-linked poly-ubiquitination and aggregation of MAVS and thereby suppresses the innate antiviral immune response. Mice infected with an RNA virus carrying SARS2-NP exhibited reduced innate immunity, an increased viral load and high morbidity. Notably, we identified SARS2-NP acetylation at Lys375 by host acetyltransferase and reported frequently occurring acetylation-mimicking mutations of Lys375, all of which impaired SARS2-NP liquid-liquid phase separation with RNA. Importantly, a peptide targeting the dimerization domain was screened out to disrupt the SARS2-NP liquid-liquid phase separation and demonstrated to inhibit SARS-CoV-2 replication and rescue innate antiviral immunity both in vitro and in vivo.


Assuntos
Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/genética , Animais , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Camundongos , Proteínas do Nucleocapsídeo/genética , Vírus de RNA/genética , SARS-CoV-2/fisiologia
20.
Medicine (Baltimore) ; 100(23): e26222, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115007

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is one of the most common microvascular complications of diabetes mellitus, with an incidence ranging from 60% to 90%. With the change in modern dietary structure, the incidence of diabetes is increasing year by year, and DPN is also on the rise. Tuina therapy has been widely used in the treatment of DPN, but there is no systematic review on the treatment of DPN. Therefore, this study aimed to conduct a meta-analysis of Tuina in the treatment of DPN to clarify its efficacy. METHODS: The following electronic databases will be searched: PubMed, the Cochrane Library, Embase, Web of Science, Medline, CNKI, Chinese Biomedical Literature Database, VIP, and Wan Fang databases. We will consider articles published between database initiation and May 2021. We will use Review Manager 5.4, provided by the Cochrane Collaborative Network for statistical analysis. Clinical randomized controlled trials related to Tuina for diabetic peripheral neuropathy were included in this study. Language is limited to both Chinese and English. Research selection, data extraction, and research quality assessments were independently completed by two researchers. We then assessed the quality and risk of the included studies and observed the outcome measures. RESULTS: This study provides a high-quality synthesis to assess the effectiveness and safety of Tuina for treating diabetic peripheral neuropathy. CONCLUSION: This systematic review will provide evidence to determine whether Tuina is an effective and safe intervention for patients with diabetic peripheral neuropathy. ETHICS AND DISSEMINATION: The protocol of the systematic review does not require ethical approval because it does not involve humans. This article will be published in peer-reviewed journals and presented at relevant conferences. REGISTRATION NUMBER: INPLASY202150027.


Assuntos
Protocolos Clínicos , Neuropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa/normas , Resultado do Tratamento , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/psicologia , Humanos , Medicina Tradicional Chinesa/métodos , Metanálise como Assunto , Revisões Sistemáticas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...