Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Nat Nanotechnol ; 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958933

RESUMO

Despite the notable progress in perovskite solar cells, maintaining long-term operational stability and minimizing potentially leaked lead (Pb2+) ions are two challenges that are yet to be resolved. Here we address these issues using a thiol-functionalized 2D conjugated metal-organic framework as an electron-extraction layer at the perovskite/cathode interface. The resultant devices exhibit high power conversion efficiency (22.02%) along with a substantially improved long-term operational stability. The perovskite solar cell modified with a metal-organic framework could retain more than 90% of its initial efficiency under accelerated testing conditions, that is continuous light irradiation at maximum power point tracking for 1,000 h at 85 °C. More importantly, the functionalized metal-organic framework could capture most of the Pb2+ leaked from the degraded perovskite solar cells by forming water-insoluble solids. Therefore, this method that simultaneously tackles the operational stability and lead contamination issues in perovskite solar cells could greatly improve the feasibility of large-scale deployment of perovskite photovoltaic technology.

2.
Sci Adv ; 6(30): eaba4017, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832665

RESUMO

Engineered heterostructures formed by complex oxide materials are a rich source of emergent phenomena and technological applications. In the quest for new functionality, a vastly unexplored avenue is interfacing oxide perovskites with materials having dissimilar crystallochemical properties. Here, we propose a unique class of heterointerfaces based on nitride antiperovskite and oxide perovskite materials as a previously unidentified direction for materials design. We demonstrate the fabrication of atomically sharp interfaces between nitride antiperovskite Mn3GaN and oxide perovskites (La0.3Sr0.7)(Al0.65Ta0.35)O3 and SrTiO3. Using atomic-resolution imaging/spectroscopic techniques and first-principles calculations, we determine the atomic-scale structure, composition, and bonding at the interface. The epitaxial antiperovskite/perovskite heterointerface is mediated by a coherent interfacial monolayer that interpolates between the two antistructures. We anticipate our results to be an important step for the development of functional antiperovskite/perovskite heterostructures, combining their unique characteristics such as topological properties for ultralow-power applications.

3.
Dalton Trans ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808638

RESUMO

We report a curious case study of a Zr(iv)-carboxylate framework, which retains significant crystalline order after cascade thermocyclization of its linker components, and - more notably - after the crucial carboxylate links were severed by heat. Vigorous heat treatment (e.g., 450 °C and above) benzannulates the multiple alkyne groups on the linker to generate linked nanographene blocks and to afford real stability. The resultant Zr oxide/nanographene hybrid solid is stable in saturated NaOH and concentrated H3PO4, allowing a convenient anchoring of H3PO4 into its porous matrix to enable size-selective heterogeneous acid catalysis. The Zr oxide components can also be removed by strong hydrofluoric acid to further enhance the surface area (up to 650 m2 g-1), without collapsing the nanographene scaffold. The crystallinity order and the extensive thermal transformations were characterized by X-ray diffraction, scanning transmission electron microscopy (STEM), IR, solid state NMR and other instrumental methods.

4.
J Am Chem Soc ; 142(33): 14178-14189, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32689793

RESUMO

Methanol carbonylation to acetic acid (AA) is a large-scale commodity chemical production process that requires homogeneous liquid-phase organometallic catalysts with corrosive halide-based cocatalysts to achieve high selectivity and activity. Here, we demonstrate a heterogeneous catalyst based on atomically dispersed rhenium (ReO4) active sites on an inert support (SiO2) for the halide-free, gas phase carbonylation of methanol to AA. Atomically dispersed ReO4 species and nanometer sized ReOx clusters were deposited on a high surface area (700 m2/g) inert SiO2 using triethanolamine as a dispersion promoter and characterized using aberration corrected scanning transmission electron microscopy (AC-STEM), UV-vis spectroscopy, and X-ray absorption spectroscopy (XAS). Reactivity measurements at atmospheric pressure with 30 mbar of methanol and CO (1:1 molar ratio) showed that bulk Re2O7 and ReOx clusters on SiO2 (formed at >10 wt %) were selective for dimethyl ether formation, while atomically dispersed ReO4 on SiO2 (formed at <10 wt %) exhibited stable (for 60 h) > 93% selectivity to AA with single pass conversion >60%. Kinetic analysis, in situ FTIR, and in situ XAS measurements suggest that the AA formation mechanism involves methanol activation on ReO4, followed by CO insertion into the terminal methyl species. Further, the introduction of ∼0.2 wt % of atomically dispersed Rh to 10 wt % atomically dispersed ReO4 on SiO2 resulted in >96% selectivity toward AA production at volumetric reaction rates comparable to homogeneous processes. This work introduces a new class of promising heterogeneous catalysts based on atomically dispersed ReO4 on inert supports for alcohol carbonylation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32686244

RESUMO

Closing the anthropogenic carbon cycle by converting CO2 into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2 in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N-doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2 reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at -0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2 evolution reaction (HER) to compete with the CO2 reduction reaction (CO2 RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size-dependent CO2 reduction for various sizes of Ni metal catalysts.

6.
Genomics ; 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32712292

RESUMO

DNA methylation plays a vital role in transcription regulation. Reduced representation bisulfite sequencing (RRBS) is becoming common for analyzing genome-wide methylation profiles at the single nucleotide level. A major goal of RRBS studies is to detect differentially methylated regions (DMRs) between different biological conditions. The previous tools to predict DMRs lack consistency. Here, we simulated RRBS datasets with significant attributes of real sequencing data under a wide range of scenarios, and systematically evaluated seven DMR detection tools in terms of type I error rate, precision/recall (PR), and area under ROC curve (AUC) using different methylation levels, sequencing coverage depth, length of DMRs, read length, and sample sizes. DMRfinder, methylSig, and methylKit were our preferred tools for RRBS data analysis, in terms of their AUC and PR curves. Our comparison highlights the different applicability of DMR detection tools and provides information to guide researchers towards the advancement of sequence-based DMR analysis.

7.
Nat Commun ; 11(1): 2836, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504063

RESUMO

Magnetoelectric coupling at room temperature in multiferroic materials, such as BiFeO3, is one of the leading candidates to develop low-power spintronics and emerging memory technologies. Although extensive research activity has been devoted recently to exploring the physical properties, especially focusing on ferroelectricity and antiferromagnetism in chemically modified BiFeO3, a concrete understanding of the magnetoelectric coupling is yet to be fulfilled. We have discovered that La substitutions at the Bi-site lead to a progressive increase in the degeneracy of the potential energy landscape of the BiFeO3 system exemplified by a rotation of the polar axis away from the 〈111〉pc towards the 〈112〉pc discretion. This is accompanied by corresponding rotation of the antiferromagnetic axis as well, thus maintaining the right-handed vectorial relationship between ferroelectric polarization, antiferromagnetic vector and the Dzyaloshinskii-Moriya vector. As a consequence, La-BiFeO3 films exhibit a magnetoelectric coupling that is distinctly different from the undoped BiFeO3 films.

8.
RNA Biol ; 17(8): 1081-1091, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597311

RESUMO

Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs whose biological roles in cancers are not well understood. Emerging evidence suggests that tRFs are involved in gene regulation at multiple levels. In this study, we constructed an integrative database, OncotRF (http://bioinformatics.zju.edu.cn/OncotRF), for in silico exploration of tRF functions, and identification of diagnostic and prognostic biomarkers in cancers. The database contains an analysis pipeline for tRF identification and characterization, analysis results of 11,211 small RNA sequencing samples and 8,776 RNA sequencing samples, and clinicopathologic annotation data from The Cancer Genome Atlas (TCGA). The results include: tRF identification and quantification across 33 cancers, abnormally expressed tRFs and genes, tRF-gene correlations, tRF-gene networks, survival analyses, and tRF-related functional enrichment analyses. Users are also able to identify differentially expressed tRFs, predict their functions, and assess the relevance of the tRF expression levels to the clinical outcome according to user-defined groups. Additionally, an online Kaplan-Meier plotter is available in OncotRF for plotting survival curves according to user-defined groups. OncotRF will be a valuable online database and functional annotation tool for researchers studying the roles, functions, and mechanisms of tRFs in human cancers.

9.
Nat Commun ; 11(1): 2773, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487987

RESUMO

Cryo-electron microscopy is an essential tool for high-resolution structural studies of biological systems. This method relies on the use of phase contrast imaging at high defocus to improve information transfer at low spatial frequencies at the expense of higher spatial frequencies. Here we demonstrate that electron ptychography can recover the phase of the specimen with continuous information transfer across a wide range of the spatial frequency spectrum, with improved transfer at lower spatial frequencies, and as such is more efficient for phase recovery than conventional phase contrast imaging. We further show that the method can be used to study frozen-hydrated specimens of rotavirus double-layered particles and HIV-1 virus-like particles under low-dose conditions (5.7 e/Å2) and heterogeneous objects in an Adenovirus-infected cell over large fields of view (1.14 × 1.14 µm), thus making it suitable for studies of many biologically important structures.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/instrumentação , Elétrons , HIV-1 , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Contraste de Fase/métodos , Modelos Teóricos , Vírion/ultraestrutura
12.
Nature ; 579(7799): 368-374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188941

RESUMO

Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest1-4. However, most vdWHs reported so far  are created by an arduous micromechanical exfoliation and manual restacking process5, which-although versatile for proof-of-concept demonstrations6-16 and fundamental studies17-30-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moiré superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.

13.
J Phys Chem Lett ; 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32208608

RESUMO

Pt-oxygen-containing-species (Pt-OCS) catalysts, in which OCS (e.g., metal-oxides) are decorated on Pt surface, possess enhanced ethanol oxidation reaction (EOR) activity and stability than pure Pt and are promising in practical applications of direct ethanol fuel cells (DEFCs). We here investigate the promotion roles of Pt-OCS electrocatalysts toward EOR via a combination of density functional theory (DFT) calculation and experiments, providing a rational design strategy of Pt-OCS catalysts. It is revealed that Pt-AuO and Pt-SnO are excelling in EOR activity and stability, respectively, among DFT screening of various Pt-OCS systems, and this is confirmed by following experiments. Moreover, an optimized Pt-AuSnO catalyst is proposed by theoretical calculation, taking advantages of both Pt-AuO and Pt-SnO. The as-prepared Pt-AuSnO catalyst delivers an EOR activity of 9.7-times higher than that of Pt and shows desired stability. These findings are expected to elucidate the mechanistic insights of Pt-OCS materials and lead to advanced EOR electrocatalysts.

14.
Proc Natl Acad Sci U S A ; 117(9): 4533-4538, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071247

RESUMO

The grain-boundary (GB) mobility relates the GB velocity to the driving force. While the GB velocity is normally associated with motion of the GB normal to the GB plane, there is often a tangential motion of one grain with respect to the other across a GB; i.e., the GB velocity is a vector. GB motion can be driven by a jump in chemical potential across a GB or by shear applied parallel to the GB plane; the driving force has three components. Hence, the GB mobility must be a tensor (the off-diagonal components indicate shear coupling). Performing molecular dynamics (MD) simulations on a symmetric-tilt GB in copper, we demonstrate that all six components of the GB mobility tensor are nonzero (the mobility tensor is symmetric, as required by Onsager). We demonstrate that some of these mobility components increase with temperature, while, surprisingly, others decrease. We develop a disconnection dynamics-based statistical model that suggests that GB mobilities follow an Arrhenius relation with respect to temperature T below a critical temperature [Formula: see text] and decrease as [Formula: see text] above it. [Formula: see text] is related to the operative disconnection mode(s) and its (their) energetics. For any GB, which disconnection modes dominate depends on the nature of the driving force and the mobility component of interest. Finally, we examine the impact of the generalization of the mobility for applications in classical capillarity-driven grain growth. We demonstrate that stress generation during GB migration (shear coupling) necessarily slows grain growth and reduces GB mobility in polycrystals.

15.
J Am Chem Soc ; 142(1): 169-184, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815460

RESUMO

Catalysts consisting of atomically dispersed Pt (Ptiso) species on CeO2 supports have received recent interest due to their potential for efficient metal utilization in catalytic convertors. However, discrepancies exist between the behavior (reducibility, interaction strength with adsorbates) of high surface area Ptiso/CeO2 systems and of well-defined surface science and computational model systems, suggesting differences in Pt local coordination in the two classes of materials. Here, we reconcile these differences by demonstrating that high surface area Ptiso/CeO2 synthesized at low Pt loadings (<0.1% weight) exhibit resistance to reduction and sintering up to 500 °C in 0.05 bar H2 and minimal interactions with CO-properties previously seen only for model system studies. Alternatively, Pt loadings >0.1 weight % produce a distribution of sub-nanometer Pt structures, which are difficult to distinguish using common characterization techniques, and exhibit strong interactions with CO and weak resistance to sintering, even in 0.05 bar H2 at 50 °C-properties previously seen for high surface area materials. This work demonstrates that low metal loadings can be used to selectively populate the most thermodynamically stable adsorption sites on high surface area supports with atomically dispersed metals. Further, the site uniformity afforded by this synthetic approach is critical for the development of relationships between atomic scale local coordination and functional properties. Comparisons to recent studies of Ptiso/TiO2 suggest a general compromise between the stability of atomically dispersed metal catalysts and their ability to interact with and activate molecular species.

16.
Hypertension ; 75(2): 372-382, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838911

RESUMO

The SS (Dahl salt sensitive) rat is an established model of hypertension and renal damage that is accompanied with immune system activation in response to a high-salt diet. Investigations into the effects of sodium-independent and dependent components of the diet were shown to affect the disease phenotype with SS/MCW (JrHsdMcwi) rats maintained on a purified diet (AIN-76A) presenting with a more severe phenotype relative to grain-fed SS/CRL (JrHsdMcwiCrl) rats. Since contributions of the immune system, environment, and diet are documented to alter this phenotype, this present study examined the epigenetic profile of T cells isolated from the periphery and the kidney from these colonies. T cells isolated from kidneys of the 2 colonies revealed that transcriptomic and functional differences may contribute to the susceptibility of hypertension and renal damage. In response to high-salt challenge, the methylome of T cells isolated from the kidney of SS/MCW exhibit a significant increase in differentially methylated regions with a preference for hypermethylation compared with the SS/CRL kidney T cells. Circulating T cells exhibited similar methylation profiles between colonies. Utilizing transcriptomic data from T cells isolated from the same animals upon which the DNA methylation analysis was performed, a predominant negative correlation was observed between gene expression and DNA methylation in all groups. Lastly, inhibition of DNA methyltransferases blunted salt-induced hypertension and renal damage in the SS/MCW rats providing a functional role for methylation. This study demonstrated the influence of epigenetic modifications to immune cell function, highlighting the need for further investigations.

17.
Ultramicroscopy ; 208: 112850, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31629166

RESUMO

Scanning diffraction uses the diffraction pattern from the sub-angstrom electron probe in scanning transmission electron microscopy (STEM) to record the probe's interaction with the sample structure. The diffraction intensity distribution carries information about the Coulomb interaction between the probe and the sample, from which the local electric field can be calculated. Although measurement of the electric field from scanning diffraction data is relatively simple under ideal conditions, theoretical and simulation studies indicate that interpretation of momentum transfer measurements is still complicated by the effects of sample thickness, dynamic scattering, and the depth of focus from the electron probe. Especially for thick samples of more than a few nanometers, simulations predicted that the measured momentum transfer in scanning diffraction is not directly correlated with the electric field. However, in our experiments, we have found that the technique is more robust than previously predicted when using specific imaging conditions. Here we systematically studied the effect of sample thickness and probe defocus on the momentum transfer of the electron probe in STEM, showing that the strong electric field close to atoms can be measured quantitatively for samples up to 5 nm and that the weak electric field in inter-atomic regions can be measured for samples up to 15 nm while maintaining qualitative accuracy in the full electric field image.

18.
Nature ; 575(7783): 480-484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610544

RESUMO

The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors1-3, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface4-6. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO3/BiFeO3 heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO3. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.

19.
Nat Commun ; 10(1): 4488, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582746

RESUMO

Single-atom catalysts are widely investigated heterogeneous catalysts; however, the identification of the local environment of single atoms under experimental conditions, as well as operando characterization of their structural changes during catalytic reactions are still challenging. Here, the preferred local coordination of Rh single atoms is investigated on TiO2 during calcination in O2, reduction in H2, CO adsorption, and reverse water gas shift (RWGS) reaction conditions. Theoretical and experimental studies clearly demonstrate that Rh single atoms adapt their local coordination and reactivity in response to various redox conditions. Single-atom catalysts hence do not have static local coordinations, but can switch from inactive to active structure under reaction conditions, hence explaining some conflicting literature accounts. The combination of approaches also elucidates the structure of the catalytic active site during reverse water gas shift. This insight on the real nature of the active site is key for the design of high-performance catalysts.

20.
Hypertension ; 74(4): 854-863, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31476910

RESUMO

The Dahl salt-sensitive (SS) rat is an established model of SS hypertension and renal damage. In addition to salt, other dietary components were shown to be important determinants of hypertension in SS rats. With previous work eliminating the involvement of genetic differences, grain-fed SS rats from Charles River Laboratories (SS/CRL; 5L2F/5L79) were less susceptible to salt-induced hypertension and renal damage compared with purified diet-fed SS rats bred at the Medical College of Wisconsin (SS/MCW; 0.4% NaCl, AIN-76A). With the known role of immunity in hypertension, the present study characterized the immune cells infiltrating SS/MCW and SS/CRL kidneys via flow cytometry and RNA sequencing in T-cells isolated from the blood and kidneys of rats maintained on their respective parental diet or on 3 weeks of high salt (4.0% NaCl, AIN-76A). SS/CRL rats were protected from salt-induced hypertension (116.5±1.2 versus 141.9±14.4 mm Hg), albuminuria (21.7±3.5 versus 162.9±22.2 mg/d), and renal immune cell infiltration compared with SS/MCW. RNA-seq revealed >50% of all annotated genes in the entire transcriptome to be significantly differentially expressed in T-cells isolated from blood versus kidney, regardless of colony or chow. Pathway analysis of significantly differentially expressed genes between low and high salt conditions demonstrated changes related to inflammation in SS/MCW renal T-cells compared with metabolism-related pathways in SS/CRL renal T-cells. These functional and transcriptomic T-cell differences between SS/MCW and SS/CRL show that dietary components in addition to salt may influence immunity and the infiltration of immune cells into the kidney, ultimately impacting susceptibility to salt-induced hypertension and renal damage.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/patologia , Rim/patologia , Cloreto de Sódio na Dieta/farmacologia , Linfócitos T/metabolismo , Transcriptoma , Animais , Pressão Sanguínea/efeitos dos fármacos , Citometria de Fluxo , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos Dahl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA