Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578418

RESUMO

In plants, HEN1-facilitated methylation at 3' end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1's methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 814-820, 2021 Aug 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34511171

RESUMO

OBJECTIVES: To study the survival rate and the incidence of complications of very preterm infants and the factors influencing the survival rate and the incidence of complications. METHODS: The medical data of the very preterm infants with a gestational age of <32 weeks and who were admitted to the Department of Neonatology in 11 hospitals of Jiangsu Province in China from January 2018 to December 2019 were retrospectively reviewed. Their survival rate and the incidence of serious complications were analyzed. A multivariate logistic regression analysis was used to evaluate the risk factors for death and serious complications in very preterm infants. RESULTS: A total of 2 339 very preterm infants were enrolled, among whom 2 010 (85.93%) survived and 1 507 (64.43%) survived without serious complications. The groups with a gestational age of 22-25+6 weeks, 26-26+6 weeks, 27-27+6 weeks, 28-28+6 weeks, 29-29+6 weeks, 30-30+6 weeks, and 31-31+6 weeks had a survival rate of 32.5%, 60.6%, 68.0%, 82.9%, 90.1%, 92.3%, and 94.8% respectively. The survival rate tended to increase with the gestational age (P<0.05) and the survival rate without serious complications in each gestational age group was 7.5%, 18.1%, 34.5%, 52.2%, 66.7%, 75.7%, and 81.8% respectively, suggesting that the survival rate without serious complications increased with the gestational age (P<0.05). The multivariate logistic regression analysis showed that high gestational age, high birth weight, and prenatal use of glucocorticoids were protective factors against death in very preterm infants (P<0.05), and 1-minute Apgar score ≤3 was a risk factor for death in very preterm infants (P<0.05); high gestational age and high birth weight were protective factors against serious complications in very preterm infants who survived (P<0.05), while 5-minute Apgar score ≤3 and maternal chorioamnionitis were risk factors for serious complications in very preterm infants who survived (P<0.05). CONCLUSIONS: The survival rate is closely associated with gestational age in very preterm infants. A low 1-minute Apgar score (≤3) may increase the risk of death in very preterm infants, while high gestational age, high birth weight, and prenatal use of glucocorticoids are associated with the reduced risk of death. A low 5-minute Apgar score (≤3) and maternal chorioamnionitis may increase the risk of serious complications in these infants, while high gestational age and high birth weight may reduce the risk of serious complications.


Assuntos
Doenças do Prematuro , Recém-Nascido Prematuro , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Gravidez , Estudos Retrospectivos , Taxa de Sobrevida
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(7): 690-695, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32669162

RESUMO

OBJECTIVE: To investigate the incidence of severe neonatal hyperbilirubinemia and the management on the treatment and follow-up of this disease in Jiangsu Province, China. METHODS: The neonates with severe hyperbilirubinemia who were admitted to 13 hospitals in Jiangsu Province from January to December, 2018, were enrolled as subjects. A retrospective analysis was performed on their mediacal data and follow-up data. RESULTS: In 2018, 740 neonates with severe hyperbilirubinemia were reported from the 13 hospitals in Jiangsu Province, accounting for 2.70% (740/27 386) of the total number of neonates admitted to the department of neonatology. Among these neonates, 620 (83.8%) had severe hyperbilirubinemia, 106 (14.3%) had extremely severe hyperbilirubinemia, and 14 (1.9%) had hazardous hyperbilirubinemia. Four neonates (0.5%) were diagnosed with acute bilirubin encephalopathy. A total of 484 neonates (65.4%) were readmitted due to severe hyperbilirubinemia after discharge from the delivery institution, with a median age of 7 days, among whom 214 (44.2%) were followed up for jaundice at the outpatient service before readmission, with a median age of 6 days at the first time of outpatient examination. During hospitalization, 211 neonates (28.5%) underwent cranial MRI examinations, among whom 85 (40.3%) had high T1WI signal in the bilateral basal ganglia and the globus pallidus; 238 neonates (32.2%) underwent brainstem auditory evoked potential examinations, among whom 14 (5.9%) passed only at one side and 7 (2.9%) failed at both sides. The 17 neonates with acute bilirubin encephalopathy or hazardous hyperbilirubinemia were followed up. Except one neonate was lost to follow-up, and there were no abnormal neurological symptoms in the other neonates. CONCLUSIONS: Neonates with severe hyperbilirubinemia account for a relatively high proportion of the total number of neonates in the department of neonatology. Jaundice monitoring and management after discharge from delivery institutions need to be strengthened. For neonates with severe hyperbilirubinemia, relevant examinations should be carried out more comprehensively during hospitalization and these neonates should be followed up comprehensively and systematically after discharge.


Assuntos
Hiperbilirrubinemia Neonatal , Bilirrubina , China , Potenciais Evocados Auditivos do Tronco Encefálico , Humanos , Recém-Nascido , Estudos Retrospectivos
4.
Front Plant Sci ; 10: 1709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082333

RESUMO

Phalaenopsis orchids have a spectacular floral morphology with a highly evolved lip that offers a landing platform for pollinators. The typical morphological orchid lip features are essential for the special pollination mechanism of Phalaenopsis flowers. Previously, we found that in the lip, a member of the AP2/EREBP protein family was highly expressed. Here, we further confirmed its high expression and characterized its function during lip development. Phylogenetic analysis showed that AP2/EREBP belongs to the Va2 subgroup of ERF transcription factors. We named it PeERF1. We found that PeERF1 was only expressed at stage 5, as flowers opened. This coincided with both thickening of the cuticle and development of nanoridges. We performed knockdown expression of PeERF1 using CymMV-based virus-induced gene silencing in either the AP2 conserved domain, producing PeERF1_AP2-silenced plants, or the SHN specific domain, producing PeERF1_SHN-silenced plants. Using cryo-SEM, we found that the number of nanoridges was reduced only in the PeERF1_AP2-silenced group. This change was found on both the abaxial and adaxial surfaces of the central lip lobe. Expression of PeERF1 was reduced significantly in PeERF1_AP2-silenced plants. In cutin biosynthesis genes, expression of both PeCYP86A2 and PeDCR was significantly decreased in both groups. The expression of PeCYP77A4 was reduced significantly only in the PeERF1_AP2-silenced plants. Although PeGPAT expression was reduced in both silenced plants, but to a lesser degree. The expression of PeERF1 was significantly reduced in the petal-like lip of a big-lip variant. PeCYP77A4 and PeGPAT in the lip were also reduced, but PeDCR was not. Furthermore, heterologous overexpression of PeERF1 in the genus Arabidopsis produced leaves that were shiny on the adaxial surface. Taken together, our results show that in Phalaenopsis orchids PeERF1 plays an important role in formation of nanoridges during lip epidermis development.

5.
Front Plant Sci ; 9: 1008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158940

RESUMO

With the growing demand for its ornamental uses, the African violet (Saintpaulia ionantha) has been popular owing to its variations in color, shape and its rapid responses to artificial selection. Wild type African violet (WT) is characterized by flowers with bilateral symmetry yet reversals showing radially symmetrical flowers such as dorsalized actinomorphic (DA) and ventralized actinomorphic (VA) peloria are common. Genetic crosses among WT, DA, and VA revealed that these floral symmetry transitions are likely to be controlled by three alleles at a single locus in which the levels of dominance are in a hierarchical fashion. To investigate whether the floral symmetry gene was responsible for these reversals, orthologs of CYCLOIDEA (CYC) were isolated and their expressions correlated to floral symmetry transitions. Quantitative RT-PCR and in situ results indicated that dorsal-specific CYCs expression in WT S. ionantha (SiCYC and SiCYC1B) shifted in DA with a heterotopically extended expression to all petals, but in VA, SiCYC1s' dorsally specific expressions were greatly reduced. Selection signature analysis revealed that the major high-expressed copy of SiCYC had been constrained under purifying selection, whereas the low-expressed helper SiCYC1B appeared to be relaxed under purifying selection after the duplication into SiCYC and SiCYC1B. Heterologous expression of SiCYC in Arabdiopsis showed petal growth retardation which was attributed to limited cell proliferation. While expression shifts of SiCYC and SiCYC1B correlate perfectly to the resulting symmetry phenotype transitions in F1s of WT and DA, there is no certain allelic combination of inherited SiCYC1s associated with specific symmetry phenotypes. This floral transition indicates that although the expression shifts of SiCYC/1B are responsible for the two contrasting actinomorphic reversals in African violet, they are likely to be controlled by upstream trans-acting factors or epigenetic regulations.

7.
Nat Genet ; 47(1): 65-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420146

RESUMO

Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers.


Assuntos
Genoma de Planta , Orchidaceae/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Proteínas de Domínio MADS , Taxa de Mutação , Orchidaceae/classificação , Orchidaceae/metabolismo , Fotossíntese/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Alinhamento de Sequência , Especificidade da Espécie
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(11): 1138-42, 2014 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-25406560

RESUMO

OBJECTIVE: To investigate the prevalence, clinical characteristics, treatment, and prognosis of neonatal respiratory failure (NRF) in Huai'an, Jiangsu Province, China, in 2010. METHODS: The clinical data of all NRF cases in the hospitals of Huai'an in 2010 were prospectively collected and analyzed using descriptive epidemiological methods. RESULTS: Among 60,986 live births in Huai'an in 2010, there were 556 (0.91%) cases of NRF. The average birth weight of newborns with NRF was 2,433±789 g, with 53.8% determined as low birth weight and 64.1% as preterm. The major causes of NRF were respiratory distress syndrome, pneumonia, asphyxia, sepsis, and pulmonary hemorrhage. Among the newborns with NRF, 23.7% were accompanied by certain birth defects. Fourteen percent of newborns with NRF received pulmonary surfactant (PS) therapy, and the median time of the first dose of PS was 5 hours (range: 0-51 hours). Nasal continuous positive airway pressure treatment, conventional mechanical ventilation, and high-frequency ventilation were used in 67.9%, 33.3%, and 13.7% of patients, respectively. The cure and improvement rate of NRF patients was 73.9% (411/556), and the mortality rate was 22.5% (125/556). The average hospitalization expenses were 9,270 (range: 196-38182) Yuan. CONCLUSIONS: High morbidity, high mortality and high medical costs make NRF a serious challenge in Huai'an. It is essential to improve the quality of perinatal care and develop new techniques and new models in neonatal respiratory therapy in order to reduce the morbidity and mortality of NRF.


Assuntos
Insuficiência Respiratória/epidemiologia , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Masculino , Surfactantes Pulmonares/uso terapêutico , Respiração Artificial , Insuficiência Respiratória/mortalidade , Insuficiência Respiratória/terapia , Fatores de Tempo , Falha de Tratamento
9.
Int Rev Cell Mol Biol ; 311: 157-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952917

RESUMO

The beauty and complexity of flowers have held the fascination of scientists for centuries, from Linnaeus, to Goethe, to Darwin, through to the present. During the past decade, enormous progress has been made in understanding the molecular regulation of flower morphogenesis. It seems likely that there are both highly conserved aspects to flower development in addition to significant differences in developmental patterning that can contribute to the unique morphologies of different species. Furthermore, floral development is attractive in that several key genes regulating fundamental processes have been identified. Crucial functional studies of floral organ identity genes in diverse taxa are allowing the real insight into the conservation of gene function, while findings on the genetic control of organ elaboration open up new avenues for investigation. These fundamentals of floral organ differentiation and growth are therefore an ideal subject for comparative analyses of flower development, which will lead to a better understanding of molecular mechanisms that control flower morphogenesis.


Assuntos
Flores/crescimento & desenvolvimento , Morfogênese , Evolução Biológica , Flores/genética , Genes de Plantas , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Modelos Genéticos , Morfogênese/genética
10.
New Phytol ; 202(3): 1024-1042, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24571782

RESUMO

The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Genes de Plantas , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Forma Celular/genética , Clonagem Molecular , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Inativação Gênica , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Organogênese/genética , Fenótipo , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica
11.
J Exp Bot ; 64(12): 3869-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956416

RESUMO

Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Etiquetas de Sequências Expressas , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Inativação Gênica , Dados de Sequência Molecular , Orchidaceae/metabolismo , Orchidaceae/virologia , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Potexvirus/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
12.
Plant Sci ; 201-202: 25-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23352400

RESUMO

Virus-induced gene silencing (VIGS) is a good way to study floral gene functions of orchids, especially those with a long life cycle. To explore the applicability and improve viral silencing efficiency for application of Cymbidium mosaic virus (CymMV)-induced gene silencing, we examined several variables, including the optimal length of the DNA fragment, the effect of developmental maturation status of inflorescence, and suitable inoculation sites. A CymMV-based VIGS system can be used with orchids to silence genes including PeUFGT3, PeMADS5 and PeMADS6 and induce prominent phenotypes with silencing efficiency up to 95.8% reduction. The DNA fragment size used for silencing can be as small as 78-85 bp and still reach 61.5-95.8% reduction. The effect of cDNA location as a target in VIGS varies among genes because of non-target gene influence when using the 5' terminus of the coding region of both PeMADS5 and PeMADS6. Use of VIGS to knock down a B-class MADS-box gene (PeMADS6) in orchids with different maturation status of inflorescence allowed for observing discernable knockdown phenotypes in flowers. Furthermore, silencing effects with Agro-infiltration did not differ with both leaf and inflorescence injections, but injection in the leaf saved time and produced less damage to plants. We propose an optimized approach for VIGS using CymMV as a silencing vector for floral functional genomics in Phalaenopsis orchid with Agro-infiltration: (1) DNA fragment length about 80 bp, (2) a more mature status of inflorescence and (3) leaf injection.


Assuntos
Flores/genética , Inativação Gênica , Vírus do Mosaico , Orchidaceae/genética , Sequência de Bases , DNA Complementar/genética , DNA de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Genes de Plantas , Vetores Genéticos/genética , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Orchidaceae/anatomia & histologia , Orchidaceae/crescimento & desenvolvimento , Fenótipo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/genética , Proteínas de Plantas/genética , Plasmídeos/genética , Reprodutibilidade dos Testes , Fatores de Tempo
13.
Asian Pac J Cancer Prev ; 13(6): 2635-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22938433

RESUMO

BACKGROUND: Many studies have investigated the association between glutathione S-transferase T 1 (GSTT1) null genotype and risk of prostate cancer, but the impact of GSTT1 null genotype in Asians is still unclear owing to inconsistencies across results. Thie present meta-analysis aimed to quantify the strength of the association between GSTT1 null genotype and risk of prostate cancer. METHODS: We searched the PubMed, Embase and Wangfang databases for studies of associations between the GSTT1 null genotype and risk of prostate cancer in Asians and estimated summary odds ratio (OR) with their 95% confidence interval (95% CI). RESULTS: A total of 11 case-control studies with 3,118 subjects were included in this meta-analysis, which showed the GSTT1 null genotype to be significantly associated with increased risk of prostate cancer in Asians (random-effects OR = 1.49, 95% CI 1.15-1.92, P = 0.002), also after adjustment for heterogeneity (fixed-effects OR = 1.45, 95% CI 1.23-1.70, P< 0.001). No evidence of publication bias was observed. CONCLUSIONS: This meta-analysis of available data suggested the GSTT1 null genotype does contribute to increased risk of prostate cancer in Asians.


Assuntos
Predisposição Genética para Doença , Glutationa Transferase/genética , Neoplasias da Próstata/genética , Ásia , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Casos e Controles , Genótipo , Glutationa Transferase/deficiência , Humanos , Masculino , Fatores de Risco
14.
Plant Cell Physiol ; 53(6): 1053-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22499266

RESUMO

Gynostemium and ovule development in orchid are unique developmental processes in the plant kingdom. Characterization of C- and D-class MADS-box genes could help reveal the molecular mechanisms underlying gynostemium and ovule development in orchids. In this study, we isolated and characterized a C- and a D-class gene, PeMADS1 and PeMADS7, respectively, from Phalaenopsis equestris. These two genes showed parallel spatial and temporal expression profiles, which suggests their cooperation in gynostemium and ovule development. Furthermore, only PeMADS1 was ectopically expressed in the petals of the gylp (gynostemium-like petal) mutant, whose petals were transformed into gynostemium-like structures. Protein-protein interaction analyses revealed that neither PeMADS1 and PeMADS7 could form a homodimer or a heterodimer. An E-class protein was needed to bridge the interaction between these two proteins. A complementation test revealed that PeMADS1 could rescue the phenotype of the AG mutant. Overexpression of PeMADS7 in Arabidopsis caused typical phenotypes of the D-class gene family. Together, these results indicated that both C-class PeMADS1 and D-class PeMADS7 play important roles in orchid gynostemium and ovule development.


Assuntos
Proteínas de Domínio MADS/genética , Orchidaceae/genética , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sequência de Aminoácidos , DNA de Plantas/genética , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Proteínas de Domínio MADS/metabolismo , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Orchidaceae/anatomia & histologia , Orchidaceae/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/ultraestrutura , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Polinização , Mapeamento de Interação de Proteínas
15.
Plant Cell Physiol ; 52(9): 1467-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21791545

RESUMO

Orchidaceae constitute one of the largest families of angiosperms. They are one of the most ecological and evolutionary significant plants and have successfully colonized almost every habitat on earth. Because of the significance of plant biology, market needs and the current level of breeding technologies, basic research into orchid biology and the application of biotechnology in the orchid industry are continually endearing scientists to orchids in Taiwan. In this introductory review, we give an overview of the research activities in orchid biology and biotechnology, including the status of genomics, transformation technology, flowering regulation, molecular regulatory mechanisms of floral development, scent production and color presentation. This information will provide a broad scope for study of orchid biology and serve as a starting point for uncovering the mysteries of orchid evolution.


Assuntos
Biotecnologia , Flores/fisiologia , Orchidaceae/genética , Cruzamento , DNA de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Flores/genética , Flores/crescimento & desenvolvimento , Genes de Plantas , Genoma de Cloroplastos , Genoma de Planta , Genômica , Cariótipo , Odorantes , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/fisiologia , Pigmentos Biológicos/genética , Taiwan , Transformação Genética
16.
Plant Cell Physiol ; 52(9): 1515-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21757456

RESUMO

Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.


Assuntos
Flores/crescimento & desenvolvimento , Genes Duplicados , Proteínas de Domínio MADS/metabolismo , Orchidaceae/genética , Clonagem Molecular , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/genética , Orchidaceae/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Genomics ; 12: 360, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21749684

RESUMO

BACKGROUND: Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. RESULTS: To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs) with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR) protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7). Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. CONCLUSION: Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies.


Assuntos
Etiquetas de Sequências Expressas , Estudos de Associação Genética , Orchidaceae/genética , Mapeamento de Sequências Contíguas , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
18.
Plant Cell Physiol ; 52(3): 563-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278368

RESUMO

The orchid floral organs represent novel and effective structures for attracting pollination vectors. In addition, to avoid inbreeding, the androecium and gynoecium are united in a single structure termed the gynostemium. Identification of C-class MADS-box genes regulating reproductive organ development could help determine the level of homology with the current ABC model of floral organ identity in orchids. In this study, we isolated and characterized two C-class AGAMOUS-like genes, denoted CeMADS1 and CeMADS2, from Cymbidium ensifolium. These two genes showed distinct spatial and temporal expression profiles, which suggests their functional diversification during gynostemium development. Furthermore, the expression of CeMADS1 but not CeMADS2 was eliminated in the multitepal mutant whose gynostemium is replaced by a newly emerged flower, and this ecotopic flower continues to produce sepals and petals centripetally. Protein interaction relationships among CeMADS1, CeMADS2 and E-class PeMADS8 proteins were assessed by yeast two-hybrid analysis. Both CeMADS1 and CeMADS2 formed homodimers and heterodimers with each other and the E-class PeMADS protein. Furthermore, transgenic Arabidopsis plants overexpressing CeMADS1 or CeMADS2 showed limited growth of primary inflorescence. Thus, CeMADS1 may have a pivotal C function in reproductive organ development in C. ensifolium.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Genes Duplicados/genética , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Sequência de Aminoácidos , Arabidopsis/genética , Northern Blotting , Southern Blotting , Flores/citologia , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Orchidaceae/citologia , Orchidaceae/ultraestrutura , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Plant Cell Physiol ; 52(2): 238-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245031

RESUMO

Orchids are one of the most ecological and evolutionarily significant plants, and the Orchidaceae is one of the most abundant families of the angiosperms. Genetic databases will be useful not only for gene discovery but also for future genomic annotation. For this purpose, OrchidBase was established from 37,979,342 sequence reads collected from 11 in-house Phalaenopsis orchid cDNA libraries. Among them, 41,310 expressed sequence tags (ESTs) were obtained by using Sanger sequencing, whereas 37,908,032 reads were obtained by using next-generation sequencing (NGS) including both Roche 454 and Solexa Illumina sequencers. These reads were assembled into 8,501 contigs and 76,116 singletons, resulting in 84,617 non-redundant transcribed sequences with an average length of 459 bp. The analysis pipeline of the database is an automated system written in Perl and C#, and consists of the following components: automatic pre-processing of EST reads, assembly of raw sequences, annotation of the assembled sequences and storage of the analyzed information in SQL databases. A web application was implemented with HTML and a Microsoft .NET Framework C# program for browsing and querying the database, creating dynamic web pages on the client side, analyzing gene ontology (GO) and mapping annotated enzymes to KEGG pathways. The online resources for putative annotation can be searched either by text or by using BLAST, and the results can be explored on the website and downloaded. Consequently, the establishment of OrchidBase will provide researchers with a high-quality genetic resource for data mining and facilitate efficient experimental studies on orchid biology and biotechnology. The OrchidBase database is freely available at http://lab.fhes.tn.edu.tw/est.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Orchidaceae/genética , Mineração de Dados , Etiquetas de Sequências Expressas , Biblioteca Gênica , Internet , Anotação de Sequência Molecular , Análise de Sequência de DNA , Interface Usuário-Computador
20.
Plant Cell Physiol ; 49(5): 814-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18390881

RESUMO

In our previous studies, we identified four DEFICIENS (DEF)-like genes and one GLOBOSA (GLO)-like gene involved in floral organ development in Phalaenopsis equestris. Revealing the DNA binding properties and protein-protein interactions of these floral homeotic MADS-box protein complexes (PeMADS) in orchids is crucial for the elucidation of the unique orchid floral morphogenesis. In this study, the interactome of B-class PeMADS proteins was assayed by the yeast two-hybrid system (Y2H) and glutathione S-transferase (GST) pull-down assays. Furthermore, the DNA binding activities of these proteins were assessed by using electrophoretic mobility shift assay (EMSA). All four DEF-like PeMADS proteins interacted individually with the GLO-like PeMADS6 in Y2H assay, yet with different strengths of interaction. Generally, the PeMADS3/PeMADS4 lineage interacted more strongly with PeMADS6 than the PeMADS2/PeMADS5 lineage did. In addition, independent homodimer formation for both PeMADS4 (DEF-like) and PeMADS6 (GLO-like) was detected. The protein-protein interactions between pairs of PeMADS proteins were further confirmed by using a GST pull-down assay. Furthermore, both the PeMADS4 homodimer and the PeMADS6 homodimer/homomultimer per se were able to bind to the MADS-box protein-binding motif CArG. The heterodimeric complexes PeMADS2-PeMADS6, PeMADS4-PeMADS6 and PeMADS5-PeMADS6 showed CArG binding activity. Taken together, these results suggest that various complexes formed among different combinations of the five B-class PeMADS proteins may increase the complexity of their regulatory functions and thus specify the molecular basis of whorl morphogenesis and combinatorial interactions of floral organ identity genes in orchids.


Assuntos
Flores/crescimento & desenvolvimento , Orchidaceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , DNA de Plantas/metabolismo , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...