Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Food Chem ; 297: 125005, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253325


Multiwalled carbon nanotubes molybdenum disulfide 3D nanocomposite (MWCNT-MoS2 NC) was successfully synthesized via eco-friendly hydrothermal method. The microstructural characterization of synthesized nanocomposite was carried out using different spectroscopic and microscopic techniques. Nanocomposite was activated using glutaraldehyde chemistry and used as a platform to immobilize Lens culinaris ß-galactosidase (Lsbgal) which resulted in 93% of immobilization efficiency. Attachment of Lsbgal onto nanocomposite was confirmed by AFM, FE-SEM, FTIR, and CLSM. The nanobiocatalyst showed broadening in operational pH and temperature working range. Remarkable increase in thermal stability was observed as compared to soluble enzyme. Nanobiocatalyst showed outstanding increase in storage stability, retained 92% of residual activity over a period of 8 months. This offers good reusability as it retained ∼50% residual activity up to 21 reuses and exhibited higher rate of lactose hydrolysis in whey. MWCNT-MoS2 NC conjugated to biomolecules can serve as a potential platform for fabrication of lactose biosensor.

Lactose/metabolismo , Lens (Planta)/enzimologia , Nanocompostos/química , Soro do Leite/metabolismo , beta-Galactosidase/metabolismo , Biocatálise , Dissulfetos/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Molibdênio/química , Nanotubos de Carbono/química , Temperatura Ambiente , beta-Galactosidase/química
Biosens Bioelectron ; 105: 173-181, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29412942


Motivation behind the present work is to fabricate a cost effective and scalable biosensing platform for an easy and reliable detection of cancer biomarker Carcinoembryonic antigen (CEA). Here, we report the sensitive and selective detection of CEA using graphene based bio-sensing platform. Large sized (~ 2.5 × 1.0cm2), uniform, continuous, single and few layers graphene films have been grown on copper (Cu) substrate employing chemical vapor deposition (CVD) technique using hexane as a liquid precursor. Functional group has been created over Graphene/Cu substrate through π-π stacking of 1- pyrenebutanoic acid succinimidyl ester (PBSE). Further, to make the sensor specific to CEA, antibody of CEA (anti-CEA) has been covalently immobilized onto PBSE/Graphene/Cu electrode. Selective and sensitive detection of CEA is achieved by anti-CEA/PBSE/Graphene/Cu electrode through electrochemical impedance spectroscopy (EIS) measurements. Under optimal condition, the fabricated sensor shows linear response in the physiological range 1.0-25.0ngmL-1 (normal value ~ 5.0ngmL-1), revealing sensitivity 563.4Ωng-1mLcm-2 with a correlation coefficient of 0.996 and limit of detection (LOD) 0.23ngmL-1. In this way, one step electrode fabrication with high specific surface area provides a light weight, low cost, reliable and scalable novel biosensing platform for sensitive and selective detection of CEA. We believe that this bioelectrode equipped with specific recognition elements could be utilized for detection of other biomolecules too.

Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/análise , Grafite/química , Animais , Antígeno Carcinoembrionário/sangue , Bovinos , Espectroscopia Dielétrica/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Modelos Moleculares , Reprodutibilidade dos Testes , Soroalbumina Bovina/química